
A MARSHALL CAVENDISH 	COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING.,IR FUN AND THE FUTURE

Vol. 4 	 No 44

BASIC PROGRAMMING 87

DRAW IT, PRINT IT 	 1365

Two alternative screen dump programs that let you take a hard
copy of your favourite screen pictures, via a printer

GAMES PROGRAMMING 48

WARGAMING: MILITARY INTELLIGENCE 1372

If you found the computer easy to beat, program a new routine
which adds 'intelligence' to the machine's strategy

MACHINE CODE 46

CLIFFHANGER: THE HIGH JUMP 	1378

In the second of the routines which let you move Willie

around, see how to make him jump to avoid obstacles

LANGUAGES 5

PATTERNS FOR PASCAL PROGRAMS 	1386

A look at the commands and structural forms available to the
Pascal programmer—and how to put them to use

APPLICATIONS 30

FROM BASIC TO BEETHOVEN I 	139111
Continuing the music composer program, add more of the listing
that lets you construct your own tunes and replay them

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents

of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Pages 1365, 1366, 1368, 1370, Joe Wright. Pages
1373, 1375, Paul Chave. Page 1377, Dave King. Pages 1378, 1379, 1380,
1383, 1384, 1385, Phil Dobson. Pages 1386, 1387, 1390, 1391, Graeme
Harris. Pages 1392, 1393, 1395.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WI V 5PA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IRL5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are Jour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries – and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WIV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, Fr..]
• 	48K,128, and + L%ek_l COMMODORE 64 and 128

HI ACORN ELECTRON,
BBC B and B+ U: DRAGON 32 and 64

TANDY TRS80
7181 	VIC 20 T COLOUR COMPUTER

TYPES OF PRINTER
INSTRUCTING THE PRINTER

COMPATIBILITY
SETTING UP A SCREEN

SIDEWAYS IMAGE

RESOLUTION AND MODE
CONTROL CODES

EIGHT-BIT FORMAT
PROGRAM LOCATION

MULTICOLOUR EFFECT

When you switch your micro off,
the beautiful images you've created
on the screen fade into darkness,
but with a few lines of code, you
can save them on paper

Your computer's graphics capabilities make it
a useful tool for preparing all sorts of charts
and diagrams—or making computer-
generated pictures, just for fun. But whether
you are interested in the practical side of
computer graphics, or see it as a new artistic
medium, the pictures you produce have the
same great limitation—they only exist for as
long as the power is on* If you want a
permanent record of the image that you can
file for reference, send through the post or
frame as a picture, you are going to have to
take it off the screen and make a hard copy.

The same problem arises, of course, when
you want a paper record of a program you
have written, or want to use your word-
processor for sending letters* And the answer
is the same—you need a printer.

But there is a difference between using a
printer to take a copy of computer-generated
text, and using it to copy a picture. This is
because of the resolution of the image
(Sinclair's own ZX printer is an exception, for
the reasons covered below)* The reason
is that most printers are normally
intended mainly to handle text,
and not graphics. They
are thus

set up to accept information in the form of
coded numbers for each character, which they
then print*

In the case of some printers, this is all they
can do* The article on pages 225 to 229 covers
the different sorts in more detail, but basically
they break down into two types—those in
which the type is made up of solid characters
(as in a daisy-wheel printer), and those where
the characters are made up of a series of dots
(dot-matrix type). The daisy-wheel's ability
is limited by the set of characters with which it
is provided, and although it can print patterns
of letters to draw a graphic image, the finest
detail you can print is the size of a character
square—not the sort of resolution you need to

print out a typical graphics screen.
Dot-matrix printers work rather differ-

ently, however* Their characters are not pre-
set within the machine, but are built up from a
series of dots, in exactly the same way as the
set of characters used by your computer is
built up on the screen from individual pixels*
The signal from the computer instructs the
printer which pins to select in the print head,
in the same way that it tells the screen which
pixels to illuminate* And because the print
head can reproduce an individual pixel—in
detail much finer than the size of a full stop on
this page—this is what makes it suitable for
recording graphics screens.

INSTRUCTING THE PRINTER
The Sinclair ZX printer in conjunction with
the Spectrum computer works rather differ-
ently from most other machines. It has the
ability to take information directly from the
screen image, pixel-by-pixel, using the
BASIC command COPY—in what is called a

screen dump. The other computers do
not have this relationship with the

printers which can be used with
them—and in fact the

Spectrum COPY cannot
always be used if you

have hooked up another make of printer* In
any of these cases you cannot key a simple,
short BASIC command to ready a printer for
graphics, as you can for text, because you
would merely access character-sized blocks of
graphics.

For example, entering ?255 on the Dragon
would cause the number 255 to appear on the
screen, but ?CH R$(255) would instead print a
orange square—the graphics block coded 255.
Now if you try to send this information to the
printer, by entering ?# — 2,CH R$(255) no-
thing would appear. The ? # — 2, instructs
the micro to send what follows to the printer,
but this time the rest of the code specifies a
DELete character, so nothing happens* Clear-
ly, some kind of initialization routine is
required to ready the printer for graphics—a
special screen dump program*

This means that you must disable some of
the automatic functions of the printer, and set
up some others. You must ensure that the
print head is set up so that the pins can be
controlled individually on the pixel-by-pixel
basis* And the print head and carriage ad-
vance must be set to advance a pixel at a time
and not to leave spaces between the lines,
rather than leaving the usual letter and line

spacing with which it is programmed.
So the screen dump routine has to set up

the printer in an eight-bit pin mode. This lets
you send information about the screen not as
ASCII codes, but as bytes—eight binary
digits. You then need to disable the line feed
which occurs automatically after a carriage
return, using either switches on the printer or
commands within the routine. Naturally, the
screen dump would be useless if it didn't
include some means of moving from one line
to the next, so you must arrange to set the
inter-line spacing and issue commands for
line feed. All that remains is to generate the
eight-bit codes that describe each pixel of the
screen, and send these to the printer line by
line.

In a moment you will see a simple BASIC
program to implement the process, and later
you will see how to improve on this by using
machine code. But first you need to think
about your computer/printer combination,
and how you are going to use the dump.

COMPATIBILITY
Any screen dump is dependent not only on
the computer for which it is written, but also
on the printer that is used. The programs in

this article are set up for the most popular
combinations.

The dumps for the Commodores are dif-
ferent from those for the other machines,
because the printers are different. The Com-
modore dumps were written for a Commo-
dore 1526 printer, (the BASIC dump) and a
Commodore 1525 printer (the machine code
dump). Some models in the Commodore
range work in the same way, but specific-
ations vary, so a dump to one printer will not
necessarily work on another in the range* The
machine code dump is unsuitable, without
major changes, for the 1526 printer. The
dumps for the other micros were written for
an Epson FX-80 printer and should work on
all Epsons and Epson-compatible machines—
the most popular types used with home
computers.

The Epson can also print in an eight-dot
high matrix. Eight dots is the most conve-
nient configuration, because the micro can
send screen information one byte (eight bits)
at a time—parallel interfacing. On the Acorns
and Dragon, this is the usual method of
connection for the printer (the Centronics-
type interface is available as an extra for the
Electron). The Spectrum needs an interface
to dump to the Epson. The programs were
written for the ZX Lprint interface and
should work with other types as well—these
have not been tested. If you have a ZX Lprint
3, this automatically supports COPY and no
special screen dumps are needed. Tandy

A machine code tone dump, and the
Dragon picture which generated it

owners tend to use Tandy printers which are
significantly different from the Epson. The
Tandy has a RS232 interface, and the dumps
listed here should work via this to the Epson,
but it has not been tested.

SETTING UP A SCREEN
If the program is suitable for your combin-
ation of computer, interface and printer, you
are ready to try the dumps. There is no point,
however, trying to dump a blank screen, so
the first thing you will need is a suitable
screen to dump—either one you have already
SAVEd, or one created for the purpose*

The easiest way to use this is to run the
program which creates the screen, and then
save the screen as a file on tape or disk. Then,
before you enter the screen dump, enter your
own Line 10 as part of the dump program
(this line number is deliberately not used in
the dump itself) to LOAD the file back into the
computer. Once this line has been obeyed and
the screen has been copied, the dump will
begin. Notice that on the Dragon, as ex-
plained later, the first part of the dump should
come before loading the screen.

Alternatively, if you want a screen dump
option built into a graphics program, you can
either place the dump at the end of the screen-
composing program, or treat it as a subrout-
ine. In either case, you will need to renumber
the lines, but Dragon users should keep Lines
2, 4 and 6 at the start of the program. Also,
Spectrum users need to decide whether to
keep the STOP in Line 110 (yes, if this line
becomes the end of the main program, but no,
if it is part of a subroutine).

SIDEWAYS IMAGE
The image dumped by this program is
printed sideways, relative to the image on the
screen. It is not essential to do this, but by
printing the Y coordinates comfortably along
the length of the paper, the printed image is,
therefore, larger than the other way around.

15 LPRINT CHR$5;
20 LPRINT CHR$27;"A";CHR$8;
30 FOR x = 0 TO 255 STEP 4
40 LPRINT CHR$13;CHR$27;"*";CHR$0;

CHR$96;CHR$1;
50 FOR y = 0 TO 175 STEP 8
60 FOR d = 0 TO —7 STEP —1
70 LET bt = (POI NT(x,y — d)*128) + (POI NT(x,

y— d)*64) + (POINT(x + 1,y — d)*32) +
(POINT(x +1,y -dpi 6) + (POINT(x + 2,
y — d)*8) + (POINT(x + 2,y — d)*4) +
(POINT(x + 3,y — d)*2) + (POINT(x + 3,
y — d))

72 LPRINT CHR$bt;
74 LPRINT CHR$bt;
80 NEXT d
90 NEXT y
100 NEXT x
110 LPRINT CHR$4:STOP

Line 15 disables the Spectrum's ASCII char-
acter set. The LPRINT in Line 20 instructs the
computer to send what follows to the printer
only and then sends an escape code A
(CHR$27 followed by "A") to set up the
printer to receive information about line
spacing. The CHR$ 8 in this line sets the

carriage advance to give no gap between the
printed lines. Line 30 sets up a loop to step
across the screen in blocks of four pixels. Line
40 sends carriage return (code 13), then
escape code *0 to set up the printer to receive
the number of bytes that will be sent in the
current line. This byte is composed of codes
96 and 1 (also in Line 40), which are interpre-
ted as 1*256 added to 96, to make 352 bytes.

Line 50 sets up a loop to step from bottom
to top of the screen, and Line 60 steps
through a block of eight pixels. Before all
three loops are incremented, Line 70 reads
the pixels, which are evaluated and set to the
variable bt. This value is printed twice by
Lines 72 and 74. The second printing is
inserted so that the printed image will appear
at twice the normal point size. Line 110
enables the Sinclair character set again.

20 OPEN5,4:0PEN4,4:0PEN6,4,6:PRINT # 6,
CHR$(20)

25 X = 8192
27 A(0) = 128:A(1) = 64:A(2) = 32:A(3) =16:

A(4) = 8:A(5) = 4:A(6) = 2:A(7) =1
30 FORNN =1T025
40 FORN =1T040:A$ =
45 FOR Z = 0 TO 7:A = 0
50 FOR ZZ = 0 TO 7:IF(PEEK(X + ZZ)AND

A(Z)) =0 THEN 70
60 A = A + A(ZZ)
70 NEXT ZZ:A$ = A$ + C H R$(A): N EXTZ:X =

X + 8:PRINT # 5,A$
80 PRINT # 4,TAB(N)CHR$(254)CHR$(141);
90 NEXTN:PRINT # 4:NEXTNN
100 CLOSE6:CLOSE4:CLOSE5

FIDE
The program is as for the Commodore 64, but
with the following changes:

30 FOR NN =1 TO 23
40 FOR N=1 TO 22

Line 20 addresses the printer and sends a
code (# 6) to set the interline spacing so that
there is no gap between the lines of print.
Line 25 gives the start address of the hi-res
screen memory, which is the area from which
you would normally dump graphics* This
address is important, because the Commo-
dores read information about the screen from
memory, and not directly by checking the
attributes of pixels on the screen.

Although the screen memory normally
starts at 8192, the address at which an image is
stored is sometimes reset by the program
which generates it. If this is the case, the new
start address must be substituted for the value
in Line 25. For example, the Computer Aided
Design (CAD) program on page 568 lets you
dump a design to a printer, but the start
address is 24576. If you use a Simons' BASIC
cartridge, this will also require you to specify
a different starting address-57344. Fur-
thermore, you need to switch out the Kernal
ROM to be able to read the address. The box
in this page gives details on finding the start
address of any graphics screen*

Line 27 sets variables to the value of each of
the eight bits that will represent a pixel. Line
30 then sets up a loop to step from top to

bottom of the screen, and Line 40 sets up a
second loop to step across the screen. Line 45
loops through eight memory locations that
store the screen* Line 50 reads the memory
bit pattern, which is set to A at Line 60. Line
70 places the bit pattern into the printer's
memory, and Line 80 actually prints it.

1E1
An important consideration for users is the
effect of mode on the resolution of the image.
On Acorn computers the pixels are of differ-
ent sizes depending on the graphics mode
selected. The program listing which follows
works only in MODE 1, which has
40 x 8 = 320 picture elements across the
screen* By comparison, MODE 0 has 640 and
MODE 2 has 160 elements, so allowances must
be made for these differences.

Unfortunately, the obvious solution—
designing a dump for MODE 0 (the screen
with the largest number of pixels) and hoping
it works for other screens—is invalid, because
it is not just the number, but also the size and
shape of the pixels which differ in the various
modes. To use the program to dump a MODE
0 screen, for example, you should change the
3 in Line 60 to 7, and change the first
occurrence of *4 in Line 70 to *2 and the 16 in
Line 30 to 32.

20 VDU 2,1,27,1,65,1,8
30 FOR X = 0 TO 1264 STEP 16
40 VDU1,27,1,ASC(""),1,0,1,0,1,1
50 FOR Y = 0 TO 1023 STEP 4

60 B%= 0:F0R D = 0 T0 3
70 B% = B%*4+ POINT(X + D*4,Y)
80 NEXT:VDU1,B%
90 NEXT:VDU1,13
100 NEXT:VDU3

The first control code (2) after the VDU
statement in Line 20 turns on the printer.
The second code (1) sends the next number to
the printer only, so 27 (the ASCII code for
ESCAPE is sent. The next part-1, 65—sends
A (the character whose ASCII code is 65).
The result of this is to send an escape code A
which tells the printer that line spacing
information follows. This information is con-
veyed by the number 8, which ensures that
the carriage advances to leave no spacing
between the lines. By the same process, Line
40 sends ESCAPE *—a code which sets the
printer into an eight-bit format—to receive
data in bytes that address each pin on the
print head. The next code in this line (1,0)
sets the print density to 0, and the number of

bytes making up each band in w h ich the
screen is scanned is given by 0 (sent as 1,0)
and 1 (sent as 1,1), also in Line 40. The 0 and
1 are interpreted as 0 added to 1*256, to make
256 bytes.

The program steps through three loops
while line 70 reads the pixels on the screen
into the variable B%, which is sent to the
printer by Line 80. The innermost loop
(Lines 60 to 80) steps across four pixels—the
width of the scan band* The second loop
(Lines 50 to 90) steps from bottom to top of
the screen through 256 pixels (1024/4), and
the first loop (Lines 30 to 100) steps across
the screen through 80 times 4 or 320 pixels.
Line 90 also sends carriage return to the
printer only (1,13), and when the dump is
complete, VDU 3 (Line 100) turns off the
printer.

10
2 DIMA(8,1)
4 FORK = 0T08:READA(K,0),A(K,1):NEXT
6 DATA 3,3,2,1,0,0,3,1,3,3,0,0,1,2,3,1,3,3

20 PRINT# — 2,CHR$(27),"A",CHR$(8)
30 FORL = 0T0255 STEP4
40 PRINT # —2,CHR$(13);CHR$(27);"*";

CHR$(0);CHR$(128);CHR$(1);
50 FORK= 1911-00 STEP-1
60 T =0:S = 0:FORM = 0T03:P = PPOINT

(L + M,K):T = T*4 + A(P,0):S = S*4 + A(P,
1):NEXT

70 PRINT# —2,CHR$(T);CHR$(S);
80 NEXTK,L
90 PRINT# —2,CHR$(27);"@"

It is important that the first three lines of this
program precede the entry of the screen
which you want to dunip. You should then set
up the graphics mode and screen type at Line
10. Because of the way that the Dragon screen
is stored, the dump needs to take account of
the colours used. For a detailed explanation of
the complexities of the Dragon graphics
screen, see page 248*

Line 2 DIMensions an array of variables to
store the dot pattern of each colour. There are
nine colours, but not all can appear on the
screen at the same time. The actual patterns,
held in the DATA statement in Line 6, are read
into the array at Line 4. Two items of DATA
specify each colour* These are printed second
over the first. For example, the first pair of
numbers (3,3) at Line 6 specify black. This
forms a pattern of binary 3 (11) over binary 3*
Similarly, the second pair (2,1) specify green,
for which the pattern is binary 1 (01) over
binary 2 (10). Notice that pairs are repeated in
the sequence, but that doesn't matter, because
the second occurrence specifies a colour that
cannot appear on the screen at the same time
as that specified by the first occurrence.

The next part of the program sets up the
printer to accept information in a bit-by-bit
form* Line 20 instructs the micro to send
what follows to the printer only PRINT # —2,
then sends escape code A, CH R$(27); "A",
which lets the printer expect information
about line spacing. The last code at this line
CHR$(8) sets the line spacing of the printer to
ensure there is no space between the lines.
Line 30 sets up a loop to step across the screen
in blocks of four pixels* Line 40 sends
carriage return CH R$(13), then escape code *
to set the printer into the eight-bit format.
Also at this line, CHR$(0) sets the print
density, and CHR$(128);CHR$(1) tells the

printer to expect 128 + (1*256), or 384 bytes.
From the range at Line 50, you can see that
the screen is 192 pixels deep, and since each
pixel is sent as a 2 x 2 dot image, 2*192 gives
384.

Line 50 loops from bottom to top of the
screen, then Line 60 moves four pixels along,
reading the screen colours and calculating the
values in S and T. Line 70 outputs these values
and Line 90 reinitializes the printer.

MULTICOLOUR EFFECT
The BASIC screen dump listed above gives
an on/off representation of the screen image,
because it reproduces the pixel pattern with-
out differentiating the colours in the screen
image* This method gives an image of even
density (except on the Acorn) which does not
depict details in the screen image well.

It is possible to write a screen dump in
which different colours show up as lighter or
darker tones of the printer's ribbon colour.
This effect is achieved by overprinting parts
of the image a varying number of times. For
example, for a four colour screen, you might
arrange to print a dot pattern once to repres-
ent red, as a pale grey, print the same pattern
twice, as green (a darker grey), three times as
another colour, and so on. This is achieved by
disabling the advance of the print head be-
tween multiple strikes.

Clearly, this process would be slow to
execute* Already the simple dump in BASIC
can take half an hour on some micros, and a
BASIC tone dump can be expected to take
several hours to dump a screen image. So the
tone dump which follows is a machine code
listing instead. The Commodore dump, how-
ever, does not use the overprint technique.

Commodore screen address
To be able to dump a screen, you must
specify the address in memory where the
screen starts. Usually, this address is 8192,
but in some programs, the screen memory
is relocated, so the new address must be
specified. To find any screen's start ad-
dress, enter (PEEK (53272) AND 240) * 64.
Sometimes the start address appears at the
start of the program, often as a number
multiplied by 256, to give the address.

10 CLEAR 59999
20 LET L=100:RESTORE L:FOR N=60000

TO 60247 STEP 8
30 LET T =0:FOR M=0 TO 7
40 READ A:LET T=T+ A:POKE

N + M,A:NEXT M
50 READ A:IF A< >T THEN PRINT "DATA

ERROR IN LINE ❑ ";L:STOP
60 LET L= L +10:NEXT N:STOP
100 DATA 243,62,3,205,1,22,33,70,639
110 DATA 235,6,4,205,9,235,62,0,756
120 DATA 50,83,235,62,0,50,84,235,799
130 DATA 6,175,221,33,85,235,197,62,

1014
140 DATA 4,237,75,83,235,245,205,15,

1099
150 DATA 235,245,205,30,235,241,126,32,

1349
160 DATA 6,203,63,203,63,203,63,230,

1034
170 DATA 7,214,7,237,68,221,119,0,873
180 DATA 221,35,241,12,61,32,222,58,

882
190 DATA 84,235,60,50,84,235,193,16,

957
200 DATA 205,6,7,197,33,74,235,6,763
210 DATA 9,205,9,235,221,33,85,235,

1032
220 DATA 6,175,197,6,4,30,0,197,615
230 DATA 203,35,203,35,221,126,0,254,

1077
240 DATA 0,40,7,221,53,0,62,3,386
250 DATA 24,2,62,0,131,95,221,35,570
260 DATA 193,16,228,123,245,215,

241,215,1476
270 DATA 193,16,215,193,16,197,33,65

928
280 DATA 235,6,5,205,9,235,62,10,767
290 DATA 215,58,83,235,198,4,50,83,926

300 DATA 235,210,115,234,62,4,215,251,
1326

310 DATA 201,126,35,215,16,251,201,197,
1242

320 DATA 205,170,34,71,4,126,203,7,
820

330 DATA 16,252,230,1,193,201,197,62,
1152

340 DATA 175,144,230,248,71,88,22,0,
978

350 DATA 203,35,203,18,203,35,203,18,
918

360 DATA 121,203,63,203,63,203,63,111,
1030

370 DATA 38,0,25,17,0,88,25,193,386
380 DATA 201,27,64,27,65,8,5,27,424
390 DATA 65,8,27,65,0,13,27,42,247
400 DATA 0,96,1,0,0,48,48,193,386

The start address is 8192. The two 32s
printed in bold should be changed if the start
address is different. To find the new number,
divide the start address by 256.

0 DATA 169,4,162,4,160,255,32,186,255,32,
192,255,162,4,32, # 1904

1 DATA 201,255,169,8,32,210,255,169,0,141,
171,196,141,175,196,# 2319

2 DATA 141,158,195,141,172,196,169,32,141,
173,196,141,159,195,169, # 2378

3 DATA 0,141,170,196,173,171,196,141,174,
196,173,158,195,141,176, # 2401

4 DATA 196,141,172,196,173,159,195,141,177,
196,141,173,196,160,0, # 2416

5 DATA 162,0,173,0,32,57,155,196,201,0,
240,10,173,154,196, # 1749

6 DATA 24,125,163,196,141,154,196,32,106,
196,232,224,7,208,228, # 2232

7 DATA 173,175,196,201,28,208,8,173,154,
196,41,15,76,203,195, # 2042

8 DATA 173,154,196,24,105,128,32,210,255,
169,0,141,154,196,200, # 2137

9 DATA 192,8,240,21,173,172,196,141,158,
195,173,173,196,141,159, # 2338

10 DATA195,173,174,196,141,171,196,76,155,
195,173,172,196,24,105, # 2342

11 DATA 8,141,172,196,141,158,195,173,173,
196,105,0,141,173,196, # 2168

12 DATA 141,159,195,173,174,196,141,171,

196,238,170,196,173,170,196, # 2689
13 DATA 201,40,208,130,169,13,32,210,255,

173,174,196,141,171,196, # 2309
14 DATA 173,176,196,141,158,195,173,177,

196,141,159,195,162,0,32, # 2274
15 DATA106,196,232,224,7,208,248,173,158,

195,141,172,196,173,159, # 2588
16 DATA 195,141,173,196,173,171,196,141,

174,196,238,175,196,173,175, # 2713
17 DATA 196,201,29,240,3,76,124,195,169,15,

32,210,255,169,13, # 1927
18 DATA 32,210,255,32,174,255,169,4,32,195,

255,96,238,171,196, # 2314
19 DATA 173,171,196,41,7,201,0,240,18,173,

158,195,24,105,1, #1703
20 DATA 141,158,195,173,159,195,105,0,141,

159,195,96,173,158,195, # 2243
21 DATA 24,105,57,141,158,195,173,159,195,

105,1,141,159,195,96, #1904
22 DATA 0,128,64,32,16,8,4,2,1,1,2,4,8,16,32,

#318
23 DATA 64,0,0,0,0,0,0,0,0,255,253,255,255,

255,255, # 1592
24 S= 50000:FOR Z= 0T023:T = 0:FOR

ZZ=1T015:READX:T=T+X:POKE S,X:
S=S+1:NEXT ZZ

25 READA$:IF LEFT$(A$,1) < > " # " OR
VAL(RIGHT$(A$,LEN(A$) —1)) < >T
THEN 27

26 NEXT Z:PRINT"DATA 0K":END
27 PRINT"ERROR IN LINE"Z:END

10 MC= &900
20 PASSES= MC +9
30 MODE1
40 FOR T= 0 TO 3 STEP 3
50 P%=MC+16
60 [OPT T
70 .DUMP
80 LDA # &87
90 JSR &FFF4
100 LDA PASSES,Y
110 STA MC +8
120 LDA #2
130 JSR &FFEE
140 TAX
150 .L0

160 LDA DTA,X
170 JSR PRT
180 DEX
190 BPL L0
200 LDA # &FC
210 STA MC
220 LDA #4
230 STA MC +1,
240 .L1

250 LDA MC +8
260 STA MC+7
270 LDA MC + 1
280 BPL L2
290 LDA #3
300 JMP &FFEE
310 .L2
320 LDX #7
330 .L3
340 LDA DTA +3,X
350 JSR PRT
360 DEX
370 BPL L3
380 LDA # &FC
390 STA MC+2
400 LDA #3
410 STA MC+3
420 .L35
430 LDA #8
440 STA MC+6
450 .L4
460 LDA #9
470 LDX #MCMOD 256
480 LDY # MC El DIV 256
490 JSR &FFF1
500 LDA MC+ 4
510 LDY MC+B
520 CPY #7
530 BNE L45
540 LSR A
550 .L45
560 CMP MC+7
570 ROL MC+5
580 SEC
590 LDA MC
600 SBC #4
610 STA MC

620 BCS L5
630 DEC MC+1
640 .L5
650 DEC MC+6
660 BNE L4
670 LDA MC+5
680 JSR PRT
690 SEC
700 LDA MC + 2
710 SBC #4
720 STA MC+2
730 BCS L7
740 DEC MC+3
750 BPL L7
760 DEC MC+7
770 BNE L6
780 LDA #10
790 JSR PRT
800 JMP L1
810 .L6
820 JSR L8
830 JMP L2
840 .L7
850 JSR L8
860 JMP L35
870.L8
880 CLC
890 LDA MC
900 ADC #32
910 STA MC
920 BCC L9
930 INC MC+1
940 .L9
950 RTS
960 .PRT
970 PHA
980 LDA #1

990 JSR &FFEE
1000 PLA
1010 JMP &FFEE
1020 RTS
1030 .DTA
1040]NEXT
1050 FOR T=0 TO 10:READ P%?T:NEXT
1060 DATA 8,65,27,1,0,0,42,27,9,9,13
1070 F0R T= PASSESET0 PASSES +6:

READ ?T:NEXT
1080 DATA 1,3,7,1,1,3,1
1090 *SAVE GDUMP 900 9DE 910

14_6Z1H1
10 CLEAR200,29992
20 CLS: FOR K = 0T012:T = 0:FOR L = 0T023:

READA
30 P0KE29993 + 24*K + L,A:T = T + A
40 NEXT:READA:IF A< >T THENPRINT

"DATA ERROR IN LINE";1000 +10*K:END
50 NEXT
1000 DATA 0,0,0,3,27,51,24,134,254,151,

111,111,140,242,111,140,240,150,182,
133,1,39,3,108,2355

1010 DATA 140,231,77,39,4,129,2,38,3,108,
140,220,150,193,68,167,140,216,48,140,
214,23,0,142,2632

1020 DATA 95,52,4,51,141,1,1,198,191,166,
228,52,6,134,4,52,2,23,0,134,48,140,107,
166,1996

1030 DATA 134,167,192,108,97,106,228,38,
240,53,2,53,6,166,228,90,193,255,38,223,
198,3,52,6,2876

1040 DATA 51,141,0,212,198,192,231,228,48,
140,65,141,81,79,198,4,72,72,106,192,43,
2,138,3,2637

1050 DATA 90,38,245,173,159,160,2,173,159,
160,2,106,228,38,230,134,13,173,159,160,
2,106,97,38,2845

1060 DATA 207,53,6,134,10,173,159,
160,2,53,4,173,159,160,0,129,3,39,
4,203,4,38,138,48,2059

1070 DATA 140,17,32,18,5,27,42,4,
128,1,3,1,0,2,3,0,1,2,3,2,27,64,230,
128,880

1080 DATA 166,128,173,159,160,2,

90,38,247,57,134,32,109,141,255,48,39,1,
68,52,2,166,101,214,2582

1090 DATA 182,193,1,34,1,68,230,224,61,
211,186,31,1,230,99,84,84,84,109,141,
255,18,39,1,2567

1100 DATA 84,58,166,99,109,141,255,8,39,8,
132,15,64,139,15,68,32,5,132,7,64,139,7,
198,1984

1110 DATA 1,74,43,3,88,32,250,109,141,254,
238,39,14,52,4,197,85,39,5,88,235,224,32,
3,2250

1120 DATA 84,235,224,52,4,166,132,164,224,
84,37,3,68,32,250,171,141,254,206,171,
141,254,203,57,3357

Although the machine code (except for the
Acorn version) is in the form of a list of DATA
numbers, there are checksums to guard
against copying errors. But you should still
observe the usual precaution before RUNning
this machine code program—save a copy to
tape or disk, in case the program crashes. Now
RUN the program, then prepare the screen you
wish to dump. To commence dumping, enter
RAND0MIZE USR 60000 (for the Spectrum),
SYS 50000 (for the Commodore), CALL&910
(for the Acorns) or EXEC 30000 (for the
Dragon and Tandy). Notice that the Acorn
program works only in the graphics modes-
MODEs 0, 1, 2, 4 or 5.

It is important that the automatic line feed
is turned off on your printer before you start.
The printer user manual has instructions on
how to do this. For best results, fit a well used
ribbon to your printer. This gives a greater
contrast between light and dark areas of the
image.

Turn your computer opponent from
Ethelred the Unready into Genghis
Khan with these additions to
Cavendish Field. Stronger strategies
result from using heuristics
Your completed wargame probably doesn't
offer too much of a challenge at the moment.
The program only allows random movement
by the computer, so it's quite simple to outwit
the machine after you've played a few games.
Virtually any simple but sensible strategy will
be effective against the computer simply
because the computer has its plan, and doesn't
respond to the player's tactics.

When you become bored with winning
every time, the thing to do is to make the
computer's game stronger. This means that
you have to program in new routines. But as
one of the problems with writing a program
like Cavendish Field is coping with memory
restrictions—particularly on the Acorn
machines—any additions to the program have
to be simple but effective.

A STRONGER OPPONENT
Two approaches can be used to make the
computer harder to beat. The easy option is to
accept the weakness of the computer's tactics
and give it stronger forces than the player.
This is an approach that has been adopted in
some commercial wargames because this is by
far the simplest to program.

If you want to see the effect of this simple
approach, it can be added to the program with
just one or two lines, as follows. In a moment,
you'll see how to tackle a more sophisticated
answer to the problem. This involves differ-
ent additions, so you may want to read on
first, or delete the 'extra strength' lines after
you have tried them.

In the Spectrum, Dragon and Tandy
programs, the unit's initial strength is held in
element 6 of the troop array, and in the others
it's held in element 5. To increase the
computer's unit strength you only need a
simple addition:

665 IF j = 8 THEN LET T(j +1,6) = 	-F1,6) +
FN r(100): LET TO + i,7) = T(j + i,6)

[43
655 IF J = 8 THEN T(I +J,5) =

T(I +J,5) + FNR(100)

650 IF j = 8 THEN T%(i + j,5) = T%(i + j,5) +
RND(100):T%(i +j,6) = T%(i +j,5)

C-7-4 T
665 1 F J = 8 THEN T(J +1,6) = T(J +1,6) +

RND(100):T(J + 1,7) = T(J + 1,6)

The program adds a random factor to the
initial strength and stores it in the current
strength element of the troop array.

MILITARY INTELLIGENCE
Taking on an opponent embodying brute
force and ignorance is not as satisfying as
taking on an opponent, with evenly matched
forces, that is intelligent. But adding in-
telligence to the computer's play is a far more
difficult problem than adding strength.

The ideas behind adding intelligence to
Cavendish Field are somewhat different from
those you have seen in Othello (starting on
pages 980 to 984) and Fox and Geese (starting
on pages 1096 to 1100).

Consider the problem the computer has to
solve: in the two board games the play has
been very strictly defined. In both there is a
clear way forward, having strict ways of
judging success, either through tree searching
or simpler ways of looking at the board. In
both games the program had a strict algorithm
built in with no uncertainty or random ele-
ment. In the case of Fox and Geese, at the
higher levels, the algorithm is extremely
effective and should give most people a strong
challenge. In the case of Othello, the al-
gorithm is much simpler, giving the player
much less of a challenge.

Returning to the wargame, you'll soon find
that an algorithm is almost impossible to
construct. There isn't a clearly defined way
forward for either side—in fact, it is here that
the differences between chess and wargaming
become apparent. In chess, there are no
random elements, and everything that has to
be considered is connected with moves and

A BETTER OPPONENT
INTELLIGENCE OR STRENGTH?

USING HEURISTICS
SENSIBLE STRATEGIES

THE NEW ROUTINES

spatial relationships on the board. In the case
of a wargame, there is almost certainly going
to be a random element built in, and there are
several different sorts of variables to be
considered—armour, morale, movement
capabilities, numbers and so on, all play a part
in the success or failure of an army. Some
variables are interdependent, some are not.
And, more importantly, no-one is sure what
wins a battle. You cannot say 'If I follow
such-and-such a course I will win.'

From a knowledge of how your wargame
has been written, and the assumptions made,
it could be possible to construct an algorithm,
but it would be very, very complex, making
the resulting programming large and slow.
In practice, the answer to the problem of
having a large, unfavourable, or non-existent
algorithm is to resort to heuristics.

A heuristic is simply a 'rule of thumb'
which seems likely to work in some situations.

It is important to realise that heuristics are not
guaranteed to work, and may even make a
disastrous error on some occasions* The rule,
though, is generally worth trying* In fact,
heuristics are precisely what everyone uses in
everyday life because of the complexity of
many of the problems we are faced with*

The program, then, should have a list of
heuristics built in* They could look like this:
• If you are a unit of archers, and there is an
enemy unit within range, then fire.
• If you are involved in a battle, but are
losing, then try going the opposite way*
• If you are near an enemy unit which is
stronger than you, move away from it*
• If you are near a unit which is weaker than
you, attack it*

In the last case, you will see that the
computer has an advantage over you since it
knows your exact strength, while you do not
know its strength. However, it is worth
allowing the computer to use this as it allows
the machine more power of decision.

AN INTELLIGENT APPROACH
Enough of the theory—the computer needs
an overall plan. No battle is fought without
some kind of plan of action* The plan will
depend on the victory conditions for the
game—if you could win by killing the oppos-
ing general, then one possible plan would be

■ o send all units against the general's head-

quarters. In Cavendish Field, victory can
only be achieved by killing more of the enemy
than he kills of you, so the computer wants a
plan which will achieve this.

One simple method of trying to destroy
enemy troops is to attack weak units with
strong forces. This means that a plan saying
`Only attack an opponent who is weaker than
you' could be employed. In fact, this is
actually quite a complex tactic to program. It
can be simplified by saying 'concentrate all
your forces on one square'. By doing this (and
assuming that the player doesn't concentrate
on the same square), the computer's forces
should outnumber the player's. A reper-
cussion of all this is that the player's forces
will outnumber the computer's elsewhere-
this is where the heuristic falls down-so the
other, outnumbered forces should avoid
combat.

So that the player cannot readily anticipate
the computer it must have a number of
choices open to it. Again, to keep it simple,
you can make the chosen square one occupied
by one of the player's units. There is a routine
each turn which tests to see if the chosen
square is to be changed. This should keep the
player guessing as to the computer's exact
plan, and keep the computer's forces follow-
ing the same pattern.

The second aspect of play which must be
controlled intelligently is the individual ac-
tion of each unit. Irrespective of the overall
plan, each unit must respond to the immedi-
ate situation on the battlefield around it. A
unit shouldn't, for example, make straight for
the concentration point if many enemy units
block its way.

When the computer issues its orders, it
makes a series of tests. They are carried out in
a carefully considered order, bearing in mind
two considerations. Firstly, the tests should
be conducted as rapidly as possible. This
means that it should be possible to end the
test routine the moment a decision has been
made, without the need to continue with
unnecessary tests. Secondly, the most import-
ant tests should come first. If this is not the
case, the computer might make a decision
according to a less important criterion.

The rules used in the program are as
follows, with the most important first:
• If the unit is in combat and won last turn,
then continue with the same order. No other
rules will be tested if this is true.
• If the unit is in combat, but lost last turn,
then it should move away from its opponent.
This will not always be possible because the
square the unit should move into may be
already occupied, or it may be at the map
edge.

• If the unit consists of archers and a target is
within range, it should fire. Putting the rule
here ensures that the archers will always take
the less risky option of firing rather than
taking part in hand-to-hand combat.
• If there is an enemy unit which is within
maximum movement distance, and the unit is
weaker than you, attack that unit. If, however,
the unit is stronger than you, then retreat.
This is a long search because enemy units on
the field must be considered.
• Move towards the concentration square.

Even these few rules take a fair time to
operate and, if they are all tested for each unit,
the game can slow down considerably. Unfor-
tunately, this is the penalty for programming
intelligence in BASIC, as you saw in Fox and
Geese-but don't worry, there are none of the
huge waits you may have experienced in that
game.

ADDITIONAL ROUTINES
Before adding the new routines you should
delete Lines 1770 to 1790 as these now
become a separate routine.

Now add these lines:

360 DIM t$(8,12): DIM o$(5,12): DIM
w$(5,9): DIM m$(5,12): DIM a$(4,12):
DIM r$(4,12): DIM c(8)

416 LET sp =1
1665 IF wn >8 THEN LET c(wn - 8)=8
1666 IF lo > 8 THEN LET c(lo-8) =T(wn,2)
1760 LET ra = st: LET rb=sh: LET rc=fx: LET

rd=fy: GOSUB 3000
2140 REM Enemy selects action
2142 REM Dummy for repeat loop
2143 LET r= FN r(10)
2144 IF r = 1 OR T(sp,1) > 3 THEN LET

sp= FN r(8)
2145 IF r=1 AND T(sp,1) > 3 THEN GOTO

2142
2150 IF c(e-8) =8 THEN RETURN
2155 IF c(e-8) < >0 THEN LET T(e,1) = 3:

LET T(e,2) =c(e-8): LET c(e - 8) = 0:
RETURN

2170 IF T(e,3) =2 THEN LET To =1: LET
rb = e: LET rc= 5: LET rd =5: GOSUB
3000: IF gp< > -1 THEN LET T(e,1) =1:
RETURN

2180 . LET T(e,1) =3
2181 LET hp= 5: LET vp = 5: LET mv =0
2182 FOR v=1 TO 8
2183 LET zp= 0: GOSUB 3100
2184 IF zp< >0 THEN GOSUB 3200
2185 NEXT v
2187 IF hp< >5 AND vp < >5 THEN

RETURN
2188 IF my < >0 THEN LET T(e,2)=mv:

RETURN

2189 LET hp = T(e,8) - T(sp,8):
LET vp=T(e,9) -T(sp,9):
G0SUB 3200

2190 RETURN
3000 REM Target in range?
3010 LET gp= -1
3020 FOR m=ra TO (ra +7)
3030 LET xx=ABS (T(m,8) -T(rb,8)): LET

yy =ABS (T(m,9) -T(rb,9))
3040 IF xx <rc AND yy<rd AND T(m,1) <4

THEN LET rc=xx: LET rd=yy: LET gp=m
3050 NEXT m
3060 RETURN
3100 REM Is a weak or a strong unit nearby?
3110 IF T(v,1) >3 THEN RETURN
3120 LET xx=ABS (T(v,8)-T(e,8)): LET

yy= ABS (T(v,9)-T(e,9))
3130 IF T(v,7)> =T(e,7) AND xx <5 AND

yy <5 THEN LET mv=T(v,2)
3140 IF xx < hp AND yy<vp THEN LET

hp= xx: LET vp = yy: LET zp =1
: RETURN

3150 RETURN
3200 REM Move towards a predetermined

square
3210 IF hp> =0 THEN LET Ip =1
3220 IF hp< 0 THEN LET Ip = 3: LET

hp = ABS (hp)
3230 IF vp> =0 AND ABS (vp) > hp THEN

LET Ip =2
3240 IF vp <0 AND ABS (vp) > hp THEN LET

Ip = 4: LET vp = ABS (vp)
3250 LET T(e,2)=Ip
3260 RETURN

360 DIM T$(7),0$(4),W$(4),M$(4),A$(3),
R$(3),CF(8)

415 W$="NNYY":5%= 0
1665 IF WN>7 THEN

CF(WN -8)=8
1666 IF LO>7 THEN

CF(LO - 8) =T(WN,1)
1760 RA= BG:RB =SH:RC= FX:RD= FY:

GOSUB 3000
2140 REM
2142 REM
2143 R=FNR(10)
2144 IF R=1 OR T(S%,0) = 4 THEN

S%= FNR(8) -1
2145 IF R=1 OR T(S%,0) =4 THEN

2142
2150 IF CF(E -8) = 8 THENRETURN
2160 IF CF(E -8) < >0 THEN T(E,0) =2:

T(E,1) = CF(E - 8):CF(E - 8) = 0:RETURN
2170 IFT(E,2)=1THENRA= 0:RB= E:RC = 5:

RD= 5:GOSUB3000:IFGP< > -1THEN
T(E,0) =0:RETURN

2180 T(E,0) = 2
2181 H%=5:V%=5:MV= 0
2182 FOR SC=0 TO 7

2183 Z%=0:G0SUB3100
2184 IF Z%< >0 THEN G0SUB 3200
2185 NEXT SC
2187 IF H%< >5 AND V%< >5 THEN RETURN
2188 IF MV< >0 THEN T(E,1)=MV:RETURN
2189 H%= T(E,7) —T(S%,7):V%= T(E,8) —T

(S%,8):GOSUB 3200
2190 RETURN
3000 REM
3010 GP= —1
3020 FOR M = RA TO (RA + 7)
3030 XX = ABS(T(M,7) —T(RB,7)):YY = ABS

(T(M,8) —T(RB,8))
3040 IF XX < RC AND YY < RD AND T(M,0)

<4 THEN RC = XX: RD = YY:GP = M
3050 NEXT M
3060 RETURN
3100 REM
3110 IF T(SC,0) =4 THEN RETURN
3120 XX = ABS(T(SC,7) —T(E,7)):YY=ABS(T

(SC,8) —T(E,8))
3130 IF T(SC,6) > =T(E,6) AND XX <5 AND

YY <5 THEN MV=T(SC,1)
3140 IF XX < H% AND YY <V% THEN H%=

XX:V%=YY:Z%=1:RETURN
3150 RETURN
3200 REM
3210 IF H%> =0 THEN L%= 2
3220 IF H%< 0 THEN L%= 4: H%= ABS(H%)
3230 IF V%> =0 AND ABS(V%) > H% THEN

L% =1
3240 IF V%< 0 AND ABS(V%) > H% THEN

L%=3:V%=ABS(V%)
3250 T(E,1) = L%
3260 RETURN

LI
Retype the original Lines 210 to 290 plus a
new Line 300 CHAIN"GAME". SAVE this as
"WARGAME". Now LOAD your existing game.
Delete Lines 210 to 290 and Lines 65 and
2010 and then add the following lines (some
of which overwrite existing lines). SAVE this
after "WARGAME" as "GAME". To use the
program, LOAD and RUN "WARGAME", which
will then CHAIN the main program.

360 DlMtype$(7),order$(4),cf(8)
370 dir$="NWSE"
380 FORi=0T04:READorder$(i):NEXT
390 F0Ri = 0T07:READtype$(i):NEXT
415 S%= 0
1665 IF win >7 THEN cf(win —8)=8 ELSE

cf(lose — 8) = T%(win,1)
1760 PROCrng(st,sht,fx,fy)
1930 FORj = 0 TO 3
1980 A%= (1NSTR("FfHhMm",g$) + 1)DIV2 —1
2140 DEF PROCensl
2142 REPEAT
2143 R=RND(10)
2144 IFR =1 OR T%(S%,0) =4 THEN

S%= RND(8) -1
2145 UNTIL R < >1 OR T%(S%,0)< >4
2150 IF cf(en -8) =8 THEN ENDPROC
2155 IF cf(en -8) < >0 THEN T%(en,0) = 2:

T%(en,1) = cf(en - 3):cf (en - 8) = 0:
ENDPROC

2170 IF T%(en,2) =1 THENPROCrng
(0,en,5,5):IF G%< > -1 THEN T%(en,
0) = 0:ENDPROC

2180 T%(en,0) =2
2181 H%=5:V%=5:mv= 0
2182 FORsc= 0 TO 7:Z%=0:PROCwk
2184 IFZ%< >0 THEN PROCvg(en)
2185 NEXT
2187 IFH%< >5 AND V%< >5 THEN

ENDPROC
2188 IF my < >0 THEN T%(en,1)=mv:PRINT

"Retreat": ENDPROC
2189 H%=T%(en,7)-T%(S%,7):V%=T%

(en,8) -T%(S%,8):PROCvg(en)
2190 ENDPROC
2570 DATAfire,halt,move,status,rout,knights,

sergeants,men-at-arms,men-at-arms,archers,
archers,peasants,peasants

3000 DEF PROCrng(a,b,c,d)
3005 G%= -1
3010 FOR m =a TO (a +7)
3020 IF ABS(T%(m,7) -T%(b,7)) <c AND

ABS(T%(m,8)-T%(b,8))<d AND T%(m,
0) <4 THEN c=ABS(T%(m,7)-T%(b,7)):
d =ABS(T%(m,8) -T%(b,8)):G%= m

3030 NEXT
3040 ENDPROC
3100 DEF PROCwk
3105 IF T%(sc,0) =4 THEN ENDPROC
3110 IF T%(sc,6) > =T%(en,6) AND (ABS

(T%(sc,7) - T%(en,7)) <5 AND ABS
(T%(sc,8)-T%(en,8)) <5) THEN mv=T%
(sc,1)

3120 IF ABS(T%(sc,7)-T%(en,7))<H%
AND ABS(T%(sc,8) - T%(en,8)) <V%
THEN H%=T%(sc,7)-T%(en,7):V%=
T%(sc,8)-T%(en,8):Z%=1:ENDPROC

3130 ENDPROC
3200 DEF PROCvg(en)
3210 IF H%> =0 THEN L%= 2
3220 IF H%<0 THEN L%=4:H%=ABS(H%)
3230 IF V%> =0 AND ABS(V%)>H% THEN

L%=1
3240 IF V%< 0 AND ABS(V%) > H% THEN

L%=3:V%=ABS(V%)
3250 T%(en,1) = L%
3260 ENDPROC

If you have a DFS then type this after
SAVEing the program but before RUNning it.

*TAPE
FOR A%=0 TO &1980:?(&E00 + A%) =

?(PAGE+A%):NEXT
PAGE= &E00
OLD

14 ill
Before you type in these lines, the routines
starting at Line 3000 need to be moved
downwards to make space. Type:

RENUM 4000,3000

Then enter these lines:

360 DIM T$(8),0$(5),W$(5),M$(5),A$(4),
R$(4),C(8)

416 SP =1
1665 IF WN >8 THEN C(WN -8)=8
1666 IF LO >8 THEN C(LO -8) =T(WN,2)
1760 RA =ST:RB = SH:RC = FX:RD= FY:

GOSUB3000
2140 REM ENEMY SELECTS ACTION
2142 REM DUMMY FOR REPEAT LOOP
2143 R=RND(10)
2144 IF R=1 OR T(SP,1) > 3 THEN

SP= RND(8)
2145 IF R=1 AND T(SP,1) >3 THEN 2142
2150 IF C(E-8) =8 THEN RETURN
2155 IF C(E-8)< >0 THEN

T(E,1) = 3:T(E,2) = C(E - 8):C(E - 8) = 0
:RETURN

2170 IF T(E,3) = 2 THEN RA =1:RB = E:
RC = 5:RD = 5:GOSUB3000:IF
GP< > -1 THEN T(E,1) =1
:RETURN

2180 T(E,1) =3
2181 HP = 5:VP = 5:MV= 0
2182 FOR V=1 TO 8
2183 ZP=0:GOSUB 3100
2184 IF ZP< > 0 THEN GOSUB 3200
2185 NEXT V
2187 IF HP< >5 AND VP< >5 THEN

RETURN
2188 IF MV< >0 THEN T(E,2)=MV:

RETURN
2189 HP = T(E,8) - T(SP,8):VP = T(E,9) -

T(SP,9):GOSUB3200
2190 RETURN
3000 REM TARGET IN RANGE?
3010 GP= -1
3020 FOR M= RA TO (RA + 7)
3030 XX = ABS(T(M,8) - T(RB,8)):YY = ABS

(T(M,9) -T(RB,9))
3040 IF XX<RC AND YY<RD AND

T(M,1) <4 THEN
RC = XX:RD = YY:GP = M

3050 NEXTM
3060 RETURN
3100 REM IS A WEAK OR A STRONG UNIT

NEARBY?
3110 IF T(V,1) > 3 THEN RETURN
3120 XX = ABS(T(V,8) - T(E,8)):YY = ABS(T

(V, 9) - T(E, 9))
3130 IF T(V,7) > =T(E,7) AND XX <5 AND

YY <5 THEN MV=T (V,2)
3140 IF XX<HP AND YY<VP THEN

HP= XX:VP=YY:
ZP = 1: RETUR N

3150 RETURN
3200 REM M0VE T0WARDS A

PREDETERMINED SQUARE
3210 IF HP> =0 THEN LP=1
3220 IF HP <0 THEN LP = 3:

HP=ABS(HP)
3230 IF VP> =0 AND ABS(VP)> HP THEN

LP= 2
3240 IF VP <0 AND ABS(VP) > HP THEN

LP =4:VP = ABS(VP)
3250 T(E,2) = LP
3260 RETURN

HOW IT WORKS
The additions before Line 2140 initialize
some extra variables and DI Mension some new
arrays which will be used in the intelligence
routines.

At the start of the Select Action routine
there is a one in ten chance of the computer
changing its target square. The target square
is checked and adjusted if necessary, but the
computer takes no action on it at this stage—
the rest of the tests have to be carried out first*

If the unit consists of archers, Line 2170
uses the In Range routine to decide whether
to fire at an enemy unit. If the archers do not
fire, or the unit is of any other type, Line 2180
changes the order to move. The next section
of program checks each of the enemy units.
Line 2183 uses the Weak or Strong Unit
subroutine to determine if the computer's
unit should move towards (engage in combat)
or move away from the nearest unit belonging
to the player.

If the unit controlled by the computer isn't
engaged in combat, or about to do so, the
program uses the Move Towards subroutine
(at Line 3500) to move the unit towards the
target square.

YOUR CHOICE
You can incorporate either or both of the extra
strength or intelligence routines to improve
the computer's play at Cavendish Field—
according to the strength of opponent you feel
competent to take on*

The very nature of heuristics means that
the rules of thumb that have been incorpo-
rated into the program aren't necessarily the
best in all circumstances* And some players
will find these tactics easier to outwit than
others.

Only trial and error can suggest the best
compromises and you may wish to try some
different routines—you may well find you can
further strengthen the computer's play with a
little effort.

Willie is beginning to get a little
annoyed with his lot* He dislikes
boulders being rolled down the slope
at him so he starts to jump up and
down on the spot

In part two of this three part article, Willie is
going to start moving about a bit more. This
time you are going to concentrate on giving
him an up-and-down action so that he can
leap over oncoming boulders.

a
Last time you taught Willie how to walk,

this won't help when the boulders start
• . So this time you are going to make

1 • mp in the air so that the boulder
/ can 11211 past, underneath

him.

org 59336
jmp Id de,6

Id h1,759
call 949
Id a,(57335)
cp 1
jr nz,mjb
inc a
Id (57335),a
Id hl,(57332)
Id de,32
sbc hl,de
Id (57332),hI
Id bc,57048
Id a,40
Id de,259
call 58970
ret

mjb cp 2
jr nz,mjc
inc a
Id (57335),a
Id h1,(57332)
Id bc,57000
Id a,40
Id de,258
call 58970
Id de,64
add hl,de

This routine butts straight onto the end of the
last routine, overwriting the temporary ret
that was put there. It begins with the label
jmp, meaning jump, so the first thing to be
done is to play the jumping tune.

This is done by calling the
BEEP routine in ROM at 949
and feeding the appropriate
parameters to it in the DE and HL registers.
For the significance of these parameters see
page 732.

JUMPED UP
There are four parts to the jump routine, each
called in turn when the man-moving-
routine as a whole is called.

In the last part you saw how the processor
would be directed to the jmp routine if the
contents of memory location 57,335 were not
zero. And you saw how the keyboard was
scanned to see whether either of the control
keys, M and N, had been pressed.

If the N key alone is pressed and Willie is
required to jump, memory location 57,335 is
loaded with 1, which will direct the processes'

 to this routine next time the main
driving routine of the game looks at
the man-move routine.

And if the M and N keys are
pressed, Willie has to jump forward
and 129 is loaded into 57,335. This
eventuality is covered in the next
part of Cliffhanger.

For the moment though, imagine that
N alone has been pressed and this has
been detected by the man move routine
last time it was called. Now it has been
called again,

Id a,45
Id bc,15616
call 58217
ret

mjc cp 3
jr nz,mjd
inc a
Id (57335),a
Id hl,(57332)
Id bc,57048
Id a,40
Id de,259
call 58970
Id de,32
add hl,de
Id (57332),hI
ret

mjd cp 4
jr nz,mfj
Id a,0
Id (57335),a
Id h1,(57332)
Id de,32
sbc hl,de
Id bc,15616
Id a,45
call 58217
jp 59153

mfj ret

BLANKING OUT WILLIE'S FEET
SECTIONALIZING THE JUMP

PRODUCING THE JUMP
SOUND EFFECTS

ADJUSTING SCREEN POINTERS

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no

resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-

leased for the Commodore 64 and published by

New Generation Software Limited.

processor has been directed straight to the
routine given in this part of Cliffhanger and
the tune has been played* Now read on. .. *

The contents of memory location 57,335
are loaded up into the accumulator again.
Although they were already in the ac-
cumulator before this routine was called it is
more than likely that the BEEP routine has
used the accumulator in the course of making
the jumping sound effect, so it is best to be on
the safe side and load them into the ac-
cumulator again*

The contents of A are then compared to 1*
Naturally 1 is found, so the jr nz,mjb instruc-
tion following does not operate and the
processor goes straight on to inc a* This
increments the contents of the accumulator—
to 2—then the 2 is loaded back into 57,335 by
Id (57335),a. This increments the jump coun-
ter so that next time the man move routine is
called it will jump straight to the jmp routine,
but when it gets there it will skip this first part
of the jump and go straight on with part two.
As you can see, after it had hit the cp 1
instruction the following jr nz,mjb instruc-
tion would jump the processor forward to
the second part.

Willie's screen position is then loaded into
the HL register from memory location
57,332* 32 is subtracted from it by loading the
32 into the DE and performing a sbc hl,de.
This effectively moves the pointer to Willie's
position one character square up on the
screen. The result is loaded back into the
memory location that carries Willie's screen
position, 57,335*

Even though this new screen position has
been loaded back it still remains in the HL
register. All Ids are essentially copying oper-
ations which leave the value loaded both in
the new location or register it is loaded into,
and the old location or register it is loaded

;from. This is important here, as you are about
to call the block print routine at 58,970
and you need the screen position where

you are going to print in HL*
BC is loaded with the data pointer to the

first figure of the man jumping at
57,048. This data was given in an
earlier part of Cliffhanger and was
, read into a data table in memory.

A is loaded with 40—which is the attribute
for blue on cyan, Willie's colour. And DE is
set 259. This tells the block print routine to
print a block one by three-259 loads 1 into
the D register and 3 into the E register,
1 x 256 + 3 = 259* Then, the block print
routine at 58,970 is called* This prints a
picture of Willie jumping.

The processor then returns.

GOING UP
The next part of the jump routine is called
next time the man move routine is referred to,
as you have seen. Again, this starts off with a
compare to see if memory location 57,335
contains 2—which, the second time, it does.

Remember that the contents of 57,335 are
in the accumulator when the processor jumps
to this part of the routine, so you don't have to
load it up again. If the 2 is found, the
processor continues with this routine and
increments the jump counter again as
instructed by the inc a and Id (57335),a
instructions. So when the routine is called
next time, the cp 2 will not find a 2 and the jr
nz,mjb instruction will send the processor on
to part three*

If the 2 was found and this part of the
routine is required, Willie's new, elevated
position is loaded into HL from its storage
location in 57,332. BC is loaded with 57,000
which is the address of the data for Willie
standing with his legs together. This is the
picture that is going to be printed at the ,
height of Willie's leap*

A is loaded with 40—blue on cyan, Willie's
colour. And DE is set to 258 to print a block
of one by two-1 x 256 + 2 = 258* The
block print routine at 58,790 prints Willie
with his legs together up in the air.

DE is loaded with 64 and added
to the screen pointer in HL,
which moves two character
squares down the screen. HL
points to Willie's head, re-
member, so subtracting 64
(32 for each row of
squares) makes it
point to the square
below Willie's feet*
A is loaded with
45—cyan on cyan,
just a regular
piece of sky. And
BC, the data pointer,
is loaded with
15,616, *the begin-
ning of the charac-
ter set which is a
blank space.

The character print routine at 58,208 is
called, which prints one blank space to blot
out the bit of Willie left from the first part of
the jump routine* Remember, a one-by-three
block was printed on the screen there, and
only a one by two block in part two. The
processor then returns again, until next time*

JUMP DOWN
Next time, the processor skips straight to the
third part of the jump routine* Firstly, it
checks whether it needs to go on to the fourth
part of the jump routine or the section given
in the next instalment of Cliffhanger which
allows Willie to jump forward*

Then it decrements the jump counter
which is still in the accumulator and stores it
back in 57,335 so that the processor will jump
on to the fourth part of the jump routine next
time.

Willie's screen pointer is loaded back up
into the HL register* The data pointer in BC
is set back to the beginning of the same
picture data that was used in part one of the
jump routine* Willie comes down looking the
same as he did going up.

A is loaded with 40 again—blue on cyan.
And DE is set with 259 again—one by three.
The block print routine at 58,970 is called
again* This prints up Willie descending*

DE is loaded with 32 which is then added
to HL. The result is loaded back into 57,332*
This moves the screen pointer down one
character square.

The processor then returns, with the data
locations set up for the next part.

JUMP OFF
Again the routine begins with a cp to see if this
is the appropriate part of the jump routine.
But this is the last part of the routine that
makes Willie jump up and down. So if the
processor has reached this far, the contents of
the accumulator must either be 4—and this is
the part that must be executed to finish off the
jump—or 129 and Willie is going to jump
forward. In this case, the jr nz,mfj sends the
Voceslor forward to another return at the end

of this part of the program* This
return is going to be overwritten

and actually marks the spot
where the forward jump rou-

tine given in the next part
of Cliffhanger starts.

This time, though, once the test has been
passed, there is no need to increment the
jump counter* Instead it has to be reset to 0 so
that next time the man move routine is called
the processor executes the walk routine given
in the last part of Cliffhanger and checks once
more to see if any of the keys have been
pressed* This is done by the Id a,0 and the Id
(57335),a*

Willie's screen position is loaded from
57,332 into the HL register again. Then 32 is
subtracted from it via the DE register. This
moves the pointer up the screen one character
square*

BC is loaded with the address of the space,
A is loaded with the attribute for cyan on cyan
and the print routine at 58,208 is called again.
This overprints the extra character square
occupied by Willie that was printed up by
stage three of this jump routine.

The jp 59153 instruction takes the pro-
cessor back again, to the beginning of the man
move routine given in the last part of Cliff-
hanger. As the jump counter in 57,335 is now
set to 0, the processor then goes on to the
routine which overprints the rest of Willie
given there.

The processor finds its return in that
program. The ret at the end of this routine is
simply to prevent the program crashing if the
jump forward routine is called* It will be
overwritten by the next part of Cliffhanger.

In this part of the program you make Willie
move up and down and make him jump
forward* Again these are small separate rout-
ines that are going to be called by the main
man-moving routine given in the next part of
Cliffhanger.

MOVE ON UP
This little routine moves Willie up:

0RG 21584
DEC $C011
LDA $D001
SEC
SBC # 4
STA $D001
RTS
As always, you have two sets of coordinates to
deal with when moving something about on
the screen* First of all, Willie's double density
Y coordinate in memory location $C011 has
to be decremented. This moves it half a
character square up the screen*

Next the Y coordinate of sprite 0—the
sprite that carries Willie's picture—is loaded
into the accumulator. The carry flag is then
set by the SEC instruction. A subtraction is

about to be done by the processor.
The SBC # 4 then subtracts 4 from the Y

coordinate of Willie's sprite—this moves it
four pixels, or half a character square, up the
screen—and the STA stores it back into the
memory location $D001 which carries the Y
coordinate of sprite 0.

The processor then returns.

GET DOWN
The following routine moves Willie down the
screen four pixels, or half a character square:

ORG 21504
INC $C011
LDA $D001
CLC
ADC # 4
STA $D001
RTS
This works in almost exactly the same way as
the routine to move Willie up. First the
double density Y coordinate in $C011 is
incremented instead of decremented to move
him down.

The Y coordinate of sprite 0 is loaded up
into the accumulator then the carry flag is
cleared. This time an addition is going to be
done.

The ADC # 4 adds 4 to Willie's Y coordi-
nate, which moves him four pixels down,
and the result is stored back in $D001*

UP RIGHT
The next routine moves Willie up and to the
right so that he can clear an incline or jump
over a pothole or snake.

STA $D000
LDA # 0
ROL A
STA $0384
LDA $D010
FOR $0384
STA $D010
INC $C012
RTS

This routine starts off like the one that moves
Willie up* It loads the Y coordinate of Willie's
sprite into the accumulator, sets the carry
flag, subtracts 4 and stores it back in $D001.

Then the double density Y coordinate is
decremented* That's the up part taken care of.
Now to move the sprite to the right.

The X coordinate of sprite 0, which is
stored on $D000, is loaded into the ac-
cumulator* The carry flag is cleared again and
4 is added to the X coordinate of Willie's
sprite* The result is stored back in $D000*

The accumulator is then loaded with 0 and

ORG 21248
LDA $D001
SEC
SBC #4
STA $D001
DEC $C011
LDA $D000
CLC
ADC #4

a ROtate Left command is used to move any
overflow from the last addition. The result is
stored temporarily in a convenient location in
the tape buffer, memory location $0384. If
the X coordinate of the sprite has been
incremented over 256, the appropriate bit of
the MSB register in memory location $D010
must be set.

As this is sprite 0, bit zero of the MSB
register is the one that has to be set. So the
contents of the MSB register are loaded into the
accumulator and exclusively ored with the
contents of $0384—which either contains 0,
if the X coordinate was not incremented over
256, or 1 if it was. The result is stored back in
$D010.

The double density X coordinate also has
to be incremented. This is done by the INC
$C012 instruction. The processor then re-
turns to the main man-moving routine which
will be given in the next part of Cliffhanger.

11
This program tests the keys and applies
gravity to Willie—it makes him drop down if
he is not standing on firm ground. Don't
forget to set your computer up as normal
before you key in this program.

30 FORPASS=0TO3STEP3
40 P%= 841 EEE
50 [OPTPASS
60 .Keys
70 LDA&7C
80 AND#1
90 BEQLb1
100 RTS
110 .Lb1
120 LDA&7C
130 AND#&7F
140 STA&7C
150 LDA# 0
160 LDX&7A
170 LDY&7B
180 DEY
190 DEY
200 JSRMDBD
210 CMP#15
220 BEQLb2
230 CMP#16
240 BEQLb2
250 CMP#17
260 BEQLb2
270 LDA&7C
280 AND#&18
290 LSRA
300 ORA#&10
310 ORA&7C
320 STA&7C
330 RTS
340 .Lb2

640 LDA&7C
650 ORA # &20
660 STA&7C
670 .Lb5
680 LDA# &81
690 LDY # &FF
700 LDX# &EF
710 JSR&FFF4
720 TXA
730 BEQLb6
740 LDA&80
750 0RA # &80
760 STA&80

Warning: do not attempt to CALL this
program. It will not work without the routine
in the next part of Cliffhanger.

IS WILLIE SQUARE?
The contents of Willie's status location at
&7C is loaded into the accumulator. The bits
of this location tell Willie what to do next.
The meaning of each bit is explained in the
last part of Cliffhanger on page 1342.

Here the contents of this location are
ANDed with 1 to check whether Willie is in a
half character position. If he is, bit zero is set
and the BEQ instruction in Line 90 does not
make the processor branch over the RTS in
Line 100.

Willie can only stop in a full character
position. So if he is in the half character
position he is still in mid-move and this
routine need not be executed.

LOOK BELOW YOU
Willie's jump status is loaded up from &7C
again. If Willie jumped last time, the jump bit
has to be switched off this time round. So the
status byte is ANDed with &7F which clears
bit seven and the result is stored back in &7C
by the instruction in Line 140. The ac-
cumulator is then cleared by loading the
number 0 into it.

The X and Y coordinates of Willie are then
loaded up into the X and Y registers from
&7A and &7B again. And Y is decremented
twice to point to the character below Willie's
feet. The processor then jumps to the sub-
routine at &1DBD to look at the character
below Willie.

The result is returned in the accumulator
and compared with 15, 16 and 17—the UDG
numbers for a level piece of ground, a piece of
ground sloping up to the right and a piece of
ground sloping down to the right
respectively.

If ground of any description is found, the
BEQ instructions in Lines 220, 240 and 260
branch the processor forward to the label Lb2
in Line 340. If ground is not found, Willie is

either up in the air, in mid-jump, or he has
fallen down a hole, and the processor
continues.

DECLINE AND FALL
If Willie is already dead—that is, he is falling
three character squares and bit three of &7C is
set—there is nothing you can do for him. But
if he is in mid-leap, he must be brought down
one extra character square. So his status in
&7C is loaded up into the accumulator and
ANDed with &18. This isolates bits four and
five. The contents of these two bits are then
logically shifted to the right by the LSRA in
Line 290.

This means that if bit five was set and
Willie was in mid-jump and was to have fallen
one character square, bit four is now set and
he has to fall two character squares, perhaps
because he has gone over the edge of the slope.
And if bit four was set and he had to fall two
character squares, bit three is now set, he is
dead so he has to descend three character
squares because he has fallen down a hole.

If none of them are set, Willie has to drop
down one character square at least, so bit five
is set by OR ing the result with &10.

The result of all that is ORed with &7C—so
that the other bits of the status byte are
preserved but the newly set fall bits are
added—and the result is stored back in &7C
by the instruction in Line 320.

The processor then hits the RTS in Line
330 and leaves the routine.

THE KEY TO MOVEMENT
The processor is about to look at the keyboard
to see what Willie is supposed to do next. But
first it stops him in his tracks until it finds out
where to move him.

The contents of &7C are loaded up into the
accumulator, ANDed with &7 and the result is
stored back in &7C. This clears the four most
significant bits which control the jump and
Willie's right and left movements, and his
drop down one character square.

Next A is loaded with &81, Y with &FF, X
with &FF and the operating system routine at
&FFF4 is jumped to. This is the equivalent of
an OS BYTE &81—it scans the keyboard.

But with &FF in the Y register when you
enter this routine you get the equivalent of an
INKEY instruction with a negative value. This
scans the keyboard to see if a specific key has
been pressed. The key press it is looking for is
specified by the value in the X register. Here
&FF specifies the SHIFTI key. In Cliffhanger,
if the SHIFT key is pressed, Willie jumps.

If the key specified is pressed X contains
&FF when the processor comes out of the
routine. If not, X contains 0.

350 LDA&7C
360 AND # &7
370 STA&7C
380 LDA # &81
390 LDY# &FF
400 LDX# &FF
410 JSR&FFF4
420 TXA
430 BEQLb3
440 LDA&7C
450 ORA # &80
460 STA&7C
465 JSRMBEB
470 .Lb3
480 LDA# &81
490 LDY# &FF
500 LDX# &AA
510 JSR&FFF4
520 TXA
530 BEQLb4
540 LDA&7C
550 ORA # &40
560 STA&7C
570 .Lb4
580 LDA# &81
590 LDY# &FF
600 LDX# &9A
610 JSR&FFF4
620 TXA
630 BEQLb5

770 .Lb6
780 LDA# &81
790 LDY# &FF
800 LDX# &AE
810 JSR&FFF4
820 TXA
830 BEQLb7
840 LDA&80
850 AND # &7F
860 STA&80
870 .Lb7
880 RTS
890]NEXT

Here, after the processor gets back from
the routine at &FFF4, the TXA transfers the
result in the X register into A* If the SHIFT key
has not been pressed, the BEQ instruction in
Line 430 branches the processor forward to
the label Lb3 in Line 470, where the next key
press is checked for.

But if the key press is made, the BEQ
instruction does not operate and the processor
proceeds. The contents of &7C are loaded up
again, ORed with &80 and the result is stored

back in &7C. This sets bit seven which
specifies a jump, leaving the other bits alone.

The processor then jumps to the subrout-
ine at & 1BEB which gives the jump sound.

KEY LEFT GO
The instructions in Lines 480 to 510 scan the
keyboard again in exactly the same way, only
this time X is loaded with &AA which
specifies the N key. In Cliffhanger, if the N
key is pressed, Willie goes to the left*

Again the result of the scan is transferred
into the accumulator and the BEQ instruction
takes the processor onto the next keypress
check if the N key hasn't been pressed.

But if it has, the contents of &7C are ORed
with &40* This sets bit six which tells Willie
to go left.

THE RIGHT KEY
The instructions in Lines 580 to 810 scan the
keyboard again in exactly the same way, only

BNE MFJ
CLR 18261
LDX 18249
PSHS X
LDU #1536
JSR CHARPR
PULS X
LEAX 256,X
STX 18249

LDU #17774
JSR CHARPR
LEAX 254,X
JSR CHARPR
RTS

MFJ RTS
CHARPR EQU 19402
CLICK EQU 20847

this time X is loaded with &9A which spec-
ifies the M key. In Cliffhanger if the M key is
pressed, Willie goes to the right.

Again, the result of the scan is transferred
into the accumulator and the BEQ instruction
takes the processor onto the next keypress
check if the M key hasn't been pressed.

But if it has, the contents of &7C are ORed
with &20. This sets bit five which tells Willie
to go right.

Q FOR NO SONG
The instructions in Lines 680 to 710 scan the
keyboard again in exactly the same way, only
this time X is loaded with &EF which
specifies the Q key. In Cliffhanger if the Q
key is pressed, the sound is turned off.

Again, the result of the scan is transferred
into the accumulator and the BEQ instruction
takes the processor onto the next keypress
check if the Q key hasn't been pressed.

But if it has, the contents of &80 are ORed
with &80. This sets bit seven which tells the
processor that no sound is required.

SOUNDS SIBILANT
The instructions in Lines 780 to 810 scan the
keyboard again in exactly the same way, only
this time X is loaded with &AE which
specifies the S key. In Cliffhanger, if the S key
is pressed, the sound is turned back on again.

Again the result of the scan is transferred
into the accumulator and the BEQ instruction
takes the processor onto the RTS at the end of
the routine if the S key hasn't been pressed.

But if it has, the contents of &80 are AN Ded
with &7F. This clears bit sevegikich tells the,

processor that sound is required again.
The processor then hits the RTS in Line

880 and returns.

M
Last time you taught Willie how to walk.
That in itself is a significant achievement, but
it won't help Willie when the boulders start
rolling. So this time you are going to make
him jump in the air so that the boulder can
roll by underneath him.

LDU #17870
JSR CHARPR
LEAX 254,X
JSR CHARPR
LEAX 254,X
JSR CHARPR
RTS

MJB CMPA #3
BNE MJC
INC 18261
LDX 18249
LEAX —256,X
LDU #1536
JSR CHARPR
LEAX 254,X
LDU #17926
JSR CHARPR
LEAX 254,X
LDU #17958
JSR CHARPR
LEAX 254,X
LDU #17990
JSR CHARPR
RTS

MJC CMPA #4

The first thing the JUM—or jump—routine
does is to jump to the subroutine CLICK. This
plays one note of the jumping sound effect.
But you don't have that routine yet so add a
return at 20847 by POKEing it with 57, so that
the program does not crash when you test it.

JUMPING BY NUMBERS ... BEGIN!
The accumulator is then loaded with the
contents of memory location 18,261 which are
the man-jump variable. Initially this is loaded
with 1 or 129, depending on which keys are
pressed and whether a vertical jump or a
forward jump is required. But these jumps
each come in four parts and each part is
executed in turn as the man-move routine as a
whole is called successively. And to achieve
this, the man-jump variable is incremented as
each part is performed.

If the man-jump variable is 0, the part of
the routine given last time which examines
the keyboard is used to see if a jump is
required. If the man-jump variable is any-
thing other than 0, the processor skips that
part and performs one of the jump routines.

If it is 1, the first part of this routine is
performed. And during the course of the
routine, the man-jump variable is incremen-
ted so that next time the man-moving routine
is called, this part is skipped too, and the
processor jumps to part two here. Then each
time the man-move routine is called it moves
onto the next part given here—until part four
is done and the man-jump variable is reset
once again to 0.

If the man-jump routine was set to 129 by
the routine given last time, it will skip

over this part of the program and
perform the forward-jump routine

given in the listing in the next
part of Cliffhanger.

ONE!
The contents of the accumulator are

compared with 1. If 1 is not found the
processor skips on to MJA. But if 1 is found,
the processor continues with this part of the
routine.

The first thing that is done is to increment
the man-jump variable in 18,261 so that it is
ready for next time.

ORG 20140
JUM JSR CLICK

LDA 18261
CMPA #1
BNE MJA
INC 18261
LDX 18249
PSHS X
LEAX 256,X
LDU #1536
JSR CHARPR
PULS X
LEAX —256,X
STX 18249
LDU #17814
JSR CHARPR
LEAX 254,X
LDU #17846
JSR CHARPR
RTS

MJA CMPA # 2
BNE MJB
INC 18261
LDX 18249

,AX — 256,X

X is then loaded with Willie's position
from 18,249 which is stored temporarily by
pushing it onto the hardware stack. The
pointer in X is incremented by 256 to move it
down one character square* And U is loaded
with 1536, the address of the top left-hand
corner of the screen* The processor then
jumps to the CHAR PR subroutine which prints
a block of sky over the bottom half of Willie.

As he is going to jump up in the air you
need to print some sky under him. Otherwise
his legs will be left behind when he jumps*

Willie's position is pulled off the stack
again and moved one character square up the
screen by subtracting 256* This is stored back
in the position location at 18,249. U is loaded
with 17,814 which is the start address for the
data for the picture of Willie with his legs
apart. Then CHAR PR prints up his top half.

The screen pointer is then incremented by
254 to point to the start of the bottom half of
Willie and U is reloaded. CHAR PR is then
called to print up his bottom half.

So Willie is printed up with his legs apart
one character square above the ground which
makes it look like he is jumping* That done,
the processor returns.

TWO!
The next time the man-moving routine is
called, the number in location 18,261 will be
2. So the processor will skip the routine given
in the last part of Cliffhanger and the first part
of the routine given above* But when it
branches forward again to MJA, the contents
of 18,261, which are still in the accumulator,
will be compared to 2.

On subsequent calls of the man-moving
routine, when the contents of 18,261 have
been incremented again, the BN E MJB in-
struction will send the processor forward
again to check for 3 or 4, or 129 or 130 or 131
or 132. This time though, it will perform the
next little routine and print up Willie in the
second stage of flight.

Again the routine starts off by increment-
ing the contents of 18,261, ready for next time
the man-moving routine is called* Then
Willie's position is loaded from 18,249 into X
and decremented by 256 to move it one more
character square up the screen. This time,
though, the result is not stored back in
18,261* Willie is at the top of his leap.

U is loaded with 17,870, the beginning of
some new picture data for Willie. This time,
though, it is three character squares deep* So
Willie has to be printed in three sections—
CHAR PR has to be called three times and X
decremented by 254 to move one line down
the screen between each call.

That done the processor returns again.

THREE!
Next time the man-moving routine is called,
location 18,261 has three in it and the pro-
cessor performs the MJB routine. Again it
starts off by incrementing 18,261 and loading
18,249 into X and incrementing it by 256.

This time, though, Willie has passed his
zenith and is dropping again so the top part of
his last picture has to be blanked out* U is
loaded with 1536, the address of the top left-
hand corner of the screen and when CHAR PR
is called it prints a piece of plain sky over what
was Willie's head*

But Willie does not remain headless for
long* X is incremented by 254 to move the
pointer down the screen to Willie's new head
position* U is loaded with 17,926, the start
address of Willie's new head data. And
CHARPR is called to print Willie's new head
up on the screen*

The X pointer is then incremented to move
it down the screen and U is loaded with the
new data address to print up the rest of Willie.

FOUR!
If Willie is jumping vertically in the air,
sooner or later the processor will reach MJC.
The CM PA # 4 and BN E condition will only
send it on to MJ F if Willie is jumping forward.
Otherwise the last little routine here will be
performed*

And as this is the last routine involved in
making Willie jump vertically, the contents of
location 18,261 are not incremented. CLR

18261 sets them back to 0 so that the main
man-moving routine given in the last part of
Cliffhanger will be performed over again, and
the keyboard will be scanned to see if Willie is
required in jump some more*

Willie's screen position is loaded up into X
and pushed onto the hardware stack for
temporary storage. As Willie is only two
character squares tall when standing or wal-
king and three character squares tall when
jumping, the top square has to be blanked out
again* (Note that Willie does not actually get
any taller on the screen when he jumps. It is
just that he spills over into three squares,
using only half of the top and bottom squares
to give him a smoother, half-a-square-at-a-
time jump.)

U is loaded with 1536 so that it points to
blank sky at the top of the screen again. And
when CHAR PR is called, it prints blank sky
over Willie's old head.

Willie's position is then pulled off the stack
and incremented by 256 to move it one
character square down the screen. His po-
sition was decremented by 256 once at the
beginning of this routine when he started his
jump, remember. So when the new value is
stored back in 18,261, it simply puts Willie's
position back to what it was to start with.

U is then loaded with 17,774, the start
address of the data for the picture of Willie
with his legs together. CHAPR is called twice
with X incremented by 254 in between to
print up the whole of the picture of Willie.

Now that you have come to grips
with the structured nature of Pascal
programming, take a look at how the
structures are built up and how a
program evolves

The first part of this two-part article on Pas-
cal showed how you need to work out the
solution to a problem before you start to
program the computer* And you need to
refine your solution until it approximates to a
Pascal program that can be given in terms
your computer will be able to understand*

So far, so good* But you cannot hope to
write a Pascal program in this way unless you
know to start with what you are aiming
towards. In other words, you need to know
what commands and structures are supported
by Pascal, so that you can plan your program
in terms of these*

In fact, although it is not so obvious, this is
the same process you use when you write in
BASIC* Your experience of using the ma-
chine tells you what commands are available,
and how you can plan what you want to do so
that it works within the capability of the
machine. But because BASIC does not en-
force a structured approach, BASIC pro-
grammers are less conscious of this process.

So before going any further into writing
programs in Pascal, the next thing to do is to
look at how the structures are built up*

SET PIECES
In BASIC programming there are several set
procedures for dealing with a variety of
problems. Among these, common examples
include the ability to repeat an operation a set
number of times, using a FOR ** NEXT loop, or
to make a decision using IF*.*THEN* Similar
structures exist in Pascal, although these often
allow a higher level of refinement than in
BASIC* This article covers some of the most
useful of these standard forms.

Unlike BASIC, Pascal is precisely defined,
without the individual variation between dif-
ferent systems that mean a BBC BASIC
program will not run on a Commodore, for
example. This is why it is possible for the
programs given later to run on any machine
whose Pascal compiler accepts lower case*

When you come to write a Pascal program,
this means that you must work within a
precisley defined form for each statement*
These standard definitions are given in a
formal notation developed during the 1960s
and known as Backus Naur form (BNF)*

They can also be given as syntax diagrams.
Either of these forms of notation simply

give the generalized structure of the state-
ment* For example, you may want to define
an identifier such that: an identifier is defined
as a letter or a digit. In syntax diagram form
this is given as:

SET PIECES
REPETITION TECHNIQUES

WHILE...DO
REPEAT...UNTIL

FOR

DECISION MAKING
IF...THEN...ELSE

CASE
DEVELOPING A PROGRAM

ENTERING PASCAL

while in Backus Naur, this looks like:

< identifier >:: = < letter > I < letter or digit >

Either version means exactly the same as th
definition given before. If you now wanted t •
define letter, this could be written in BNF as:

<letter>::=AIBICIDIEIFIG etc

meaning: a retter is defined as A or B or C o
D or E or F or G etc.

Don't worry if you are unsure exactly ho
this works* The following standard structure •
are given in BNF to show their original form
but this relates closely to the equivalen
BASIC. And in each case you will see detaile •
examples, too*

REPETITION TECHNIQUES
Pascal provides three techniques for repe-
tition, and the choice is often dependent on
the data that is present. All of these will be
familiar to BBC BASIC programmers as the
WHILE***DO, REPEAT.**UNTIL and
FOR.**NEXT* The latter statement exists in
other BASICs, too, and the first two can be
simulated.

The article on structured programming
(pages 173 to 178) shows how each of these
works. The important difference between the
three forms is the control condition that
affects the number of repetitions* In the
WHILE*.*DO, repetition continues while a
known condition holds true* In the
REPEAT***UNTIL it goes on until a condition
occurs. These techniques are used when the
number of repeats is not known beforehand*
Where it is known then FOR*.*NEXT is often
preferred*

Refer back to the flow diagrams on pages
173 to 178 if you need to see this diagram-
matically—particularly if you are not familiar
with BBC BASIC* Then look at the forms in
Pascal.

WHILE DO
In BNF, this takes the general form:
while < logical statement > do < statement>
This type of loop is usually used when in
some circumstances the loop is not changed at
all and the number of repetitions is not known
beforehand* The repetition will continue once
each time a known condition specified in the
program remains true*

If you want to repeat a number of state-
ments within the loop these statements are
made into a single 'compound statement' by
putting a begin and end at the beginning and
end of a group of statements:

program example2(input,output);
{evaluate a running sum, using while}
var no,sum:integer;
begin

sum : = 0;
read (no);
while no < > 0 do
begin

sum : = sum + no;
read(no)

end; {while}
writeln(sum)

end. {example2}

This example should be simple to follow, and
you might like to try writing the algorithm on
which it is based.

REPEAT...UNTIL
This takes the form:

repeat <statement> until < logical
statement >

Statements between repeat and until are re-
peated until the end condition is true. All the
statements between the repeat and until are
executed at least once and the test is carried
out at the end. It is not necessary to have
compound statements bracketed between
begin and end as the repeat/until acts in the same
way.

The running sum example could be writ-
ten to allow the different statement:

program example3(input,output);
{evaluate a running sum, using repeat}
var no,sum:integer;
begin

sum : = 0;
repeat
read(no);
sum : = sum + no;

until no = 0;
write (sum)
end* {example3}

This program is obviously superior to
example2 as it uses the structure of repeat
advantageously whereas the while structure
needs an additional read(no). To work out a
running sum, it is better if the program enters
the loop so that the repeat statement is
executed. In example2 the program arrives at a
solution by working around a structure that is
not really suitable. example3 uses the best
Pascal structure.

FOR
In Pascal, FOR loops can only go in steps of
+ 1 or —1. They take the form:

program example4(input,output);
{evaluate a running sum, using for}
var no,sum,amount,i : integer;
begin

read (amount);
sum : = 0;
for i: =1 to amount do
begin

read (no);

sum : = sum + no
end; {for}
writeln (sum

end. {example4}

DECISION MAKING
Again, like BASIC, Pascal has statements to
use if a decision has to be made between
several outcomes. the first one is the
if-then-else—which also occurs in BASIC.
This is usually made when selection is one or
other of two events. If, however, the selection
is to be made from a number of events then
the case statement is usually more appropri-
ate. This is not found in this form in BASIC.

IF...THEN...ELSE

If < logical statement > then < statement >

else <statement2 >

This structure is described in INPUT on
pages 173-178. It says that the first statement
is obeyed if the controlling expression is true,
or if the expression is false the second state-
ment is followed. You can see from the BNF
diagram that the else is optional so an alterna-
tive to if-then-else is if-then.

CASE
The case statement allows a program to select
one statement from a whole list of
possibilities.

The general form of the case statement is:

case expression of
c1 : statement;
c2 : statement;

,,

cn : statement

end;
The value of expression must correspond to
one of the cs, and must be of the same type* In
standard Pascal, if the value selected does not
correspond to a case value then case is unde-
fined and an error usually occurs. Some
implementations, however, would ignore the
case statement.

Notice how there is an end associated with
case that does not have a matching begin. You
will find that this is one of the few statements
that has this feature (it is consistent if you
think about it)* It does, however, make things
difficult when you are trying to debug a
program by counting begin, ends; although it
does reinforce the value of labelling ends (by
writing end; {case}). The statements as-
sociated with each label (c) may be compound
statements, but must have the usual begin/end.
Look at this example of case:

program exam ple5 (i nput,output);
{input a number, output day of week—uses

case}
var dayno : integer;
begin

readln(dayno);
if (dayno > 0) and (dayno < 8)

then

case dayno of

1 : writeln(Vorkday Monday');
2 : writeln(`Workday Tuesday');
3 : writeln(`Workday Wednesday');
4 : writeln(Vorkday Thursday');
5 : begin

writeln('Workday Friday');
writeln(`Payday Friday')
end;

6,7 : writeln(`no work Weekend')
end {case}

else writeln(`Input must be an integer
between 1 & 7')

end. { example5}

With the S-Pascal program the labels 1, 2, 3,
4, 5, 6, and 7 must be put in brackets. The case
statement will look like:

case dayno of
(1) :Writeln (`Workday Monday');
etc*
(6,7) : Writeln (`no work Weekend)
end {case}

This is non-standard Pascal but was necessary
in this implementation because of the BASIC
systems.

The program example5 illustrates how you
can overcome the problem of attempting to
enter a case statement when one of its values is
undefined* Here we have used an if-then-else.
The example also shows you how either of
two values of dayno (in this example) may be
used as a selector and that compound state-
ments may be used for any selected case value.

DEVELOPING PROGRAMS
With a more detailed knowledge of the proce-
dures available in Pascal, you can start to take
a closer look at a Pascal program, remember-
ing that you need to work this out in detail
before you start work at the computer.

The example program deals with testing to
see whether a string is a palindrome—a word
such as radar, or a phrase such as 'madam I'm
adam' which reads the same forward as it does
backwards, ignoring all spaces and punctu-
ation marks. Suppose you have a string that
you want to test, which is:

the cat sat on the mat

The initial algorithm could read:

begin
read in input string
test if palindrome

end

This consists of just two steps, plus the
beginning and end statement required by
Pascal. In detail step 1 could read:

begin
read in number of characters (n)
read in input string into array A ,A ... A

end

This could be refined to Pascal—to give a step
(1):

readln(n);
for i: =1 to n do read (a[i]);

A detailed algorithm for step 2 could read:

begin
assign fwd to 1
assign bwd to n
while fwd <bwd do

if a[fwd] is punctuation mark then
increment fwd
else

if a[bwd] is punctuation mark then
decrement bwd

else
if a[fwd] =a[bwd] then

increment fwd
decrement bwd

else set boolean which (pal) to false
end

This could be refined to Pascal step 2 as:

fwd := 1;
bwd := n;
while (fwd < bwd) and pal do
if(a[fwd] =")or(a[fwd] ='.')or(a[fwd]=

',')or(a[fwd] ="")thenfwd:=fwd +1
else
if(a[bwd] =")or(a[bwd] ='.')or

(a[bwd] =',')or(a[bwd] ='"') then bwd: =
bwd —1

else
if a[fwd] =a[bwd] then

begin
fwd := fwd + 1;

bwd := bwd —1
end
else pal := false

A detailed algorithm for step 3 could be:

if pal is true then write 'palindrome'
else write 'not a palindrome'

which could be refined to Pascal step 3 as:

if pal then writeln (' palindrome');
else writeln ('not a palindrome')

THE COMPLETE PROGRAM
Following on from this the complete program
would read:

program example 6(input,output);
{the palindrome problem}
const most = 30;
var a : array [1 .. most] or char;

i,n,fwd,bwd : integer;
pal : boolean;

begin
pal = true;
readln(n);
for i:= 1 to n do read (a[i]);
fwd := 1;
bwd := n;
while (fwd < bwd) and pal do

if (a [fwd] =)or(a[fwd] = '.')or(a
[fwd]=',')or(a[fwd]= —) then fwd: = fwd +1

else
if(a[bwd] =")or(a[bwd] ='.')or(a

[bwd] =',')or(a[bwd] ="") then bwd:
bwd —1

else
it a[fwd] = a[bwdj then
begin

fwd := fwd + 1;
bwd : = bwd — 1;

end {if}
else pal = false;

if pal then writeln ('palindrome')
else writeln ('not a palindrome')

end. {example6}

You'll notice that when we tested for a quote
in the program it is expressed as four single
quotes. Also, in the test for the Boolean
variable (this just means a logical statement
that isn't an arithmetic quantity and can be
true or false), it is not necessary to say:

if pal = true then...

In other words:

if pal then..

is sufficient.

IMPROVEMENTS
There are a number of improvements you
can make to this program if your Pascal
system has a few additional data types. The
program—as written—should certainly work
on most small integer-only Pascal systems.

The use of the Boolean flag (which is called
pal in this example) is used as a method of
leaving the while loop when it has been
determined that a[fwd] does not equal a[bwd].
All that is done here is to set pal to false
because the test a[fwd] = a[bwd] has failed

(any Boolean variable of type boolean can
only be true or false). When an attempt is
made to go round the while loop again, the
condition that requires pal to be true fails and
the while loop is left. The technique used in
BASIC might have been:

140...
150 F0R I = 1 TO N

190 IF A(FWD) < > A(BWK) THEN 260

230 NEXT I
240 PRINT "A PALINDROME"
250 GOT0 270
260 PRINT "N0T A PALINDROME"
270 END

In BBC BASIC the code could have been a
little more elegant but jumping out of the
middle of the loop is certainly not structured.

It would have been a lot better if the
algorithm had said:

begin
define set of punctuation marks

if a[fwd] in punctuation then increment fwd
else
if a[bwd] in punctuation then decrement
backwards
else

A statement like this would have avoided the
need to keep asking:

if (a[fwd] = ") or (a[fwd] =',') or
(a[fwd[='.') or (a[fwd] ="") then ...

Although you have not yet seen it being used,
Pascal does in fact allow sets to be used—
although some of the smallest compilers do
not support the statement.

If your Pascal supports data type sets you
could modify example 6 to look like:

program example7 (input,output);
{the palindrome problem — using sets}
const most = 30;
var a : array[l .. most] of char;

i,n,fwd,bwd : integer;
pal : boolean;
punct : set of [",'.',',',""];

begin
pal : = true;
readln(n);
for i:= 1 to n do read(a[i]);
fwd := 1;
bwd := n;
while (fwd < bwd) and pal do

if a[fwd] in punct then fwd: = fwd +1
else

if a[bwd] in punct then
bwd:= bwd —1
else

if a[fwd] = a[bwd] then
begin
fwd := fwd + 1;
bwd := bwd — 1;

end
else pal := false;
if pal then writeln ('palindrome')

else writeln ('not a palindrome')
end. example7}

In the palindrome solution, the three outline
steps are:

in put string
ascertain if string is a palindrome
output result

Each step was then refined into further steps
until the result was Pascal code which was
then pieced together to form a complete
solution* For a small program this is fine, but
in cases where the outline steps are large and
complex it is best to test each of the independ-
ent modules initially and then call each
module by a procedure call. You can then
write a main program which simply consists
of a number of procedure calls* A detailed
description of how to do this is contained in
INPUT pages 201 to 207 but bear in mind
that with Pascal it is better to use the
structured technique of stepwise refined al-
gorithms rather than flowcharts.

PASCAL SYSTEMS
There are two main groups of Pascal systems.
One group uses native code compilers—
compilers written specifically for the ma-
chines that are to run the system. Obviously,
many machines are very similar, using CP/M
or MS DOS operating systems, so only very
minor modifications are needed from one
machine to another.

The other system is known as UCSD
(University of California San Diego) Pascal.
In this system the Pascal code is compiled
down to the code of a hypothetical computer
known as a p machine, and the completed
code is known as p code. This means that the
compiler that is necessary for the compilation
is the same irrespective of the host machine.
In fact, all of the UCSD system is, itself,
written in Pascal, and each host machine has a
simple program written specifically for it.

The advantage of UCSD Pascal is in-
creased portability, but the disadvantage is
that the generated code is slower in execution
than a native code compiler.

ENTERING PASCAL
If you have a Pascal system for your home
computer you can try keying in one or more of
the examples. When you have typed the
source code, compile it and run the program.
These programs should work for any Pascal
system accepting lower case input. For the
Electron and BBC using the S-Pascal pack
the procedure is as follows (written as an
algorithm):

If you have disk drives
then
begin

place disk in drive;
close hatch
press shift;
while holding shift do
begin

press and release break
release shift

end;{while}

else
begin
load cassette in recorder
rewind cassette
type CHAIN "S.PASCAL"

end;{else}

type*NEW return
key in your program
press escape

end.{s-pascal test}

You will notice that using this system, line
numbers will appear. This is to allow the
Acorn editor to be used. Pascal itself does not
use line numbers, but most of the home
computer versions offer editing facilities to

make them simpler to use.
To edit your newly created program type:

*edit

To load a file type:

LOAD "filename" after *edit

To save your file type:

SAVE "filename"after *edit

Having typed in your program, checked it and
saved it, try compiling it with the instruction:

*compile.

If there is an error the compilation will stop
and the approximate position of the error will
appear. You will then need to edit out the

error using the normal editor. Don't forget
*edit first.

If you have managed to compile the source
code so that no error messages appear then
run your program with:

*go

Perhaps the two most common causes of
errors are either variables omitted in the var
declaration, or missing or wrongly placed
semi-colons.

Remember each statement must have a
semi-colon after it except before an end* A
compound statement is surrounded by
begin/end (no semi-colon after begin). If you
put a semi-colon immediately after a while,
repeat or for statement you are marking that as
the end of the statement.

Continue entering the program that
will minimise your composing effort.
If music is your forte, stave off
creativity 'till part three when the
program is completed and explained

Here is the second part of the music composer
program. LOAD in part one and add the
section given here. Then SAVE it again ready
for the final part next time. The next part will
also give full instructions on how to use each
of the programs.

As you type in the programs you'll see that
they consist of several sections or routines
called from the main menu. The Acorn is the
exception in that it goes straight into the
graphics display and the routines are initiated
by different keypresses.

You cannot RUN the whole program until
you type in the last part but you can get a good
idea of what each program does by having a
look at the menu or the Acorn's graphics. So
even though you haven't entered the whole
program, typing RUN should still give you the
main display to see what it looks like. (On the
Commodore, deleting Line 140 will allow the
menu to appear, but don't forget to reinstate it
afterwards before you SAVE the program.)

2000 CLS
2010 GOSUB 2500
2140 PRINT 'ct;" 111 Notes entered

(";maxnotes; "Max.)""
2160 INPUT "Enter Notes — <RET> to

end ";N$
2175 IF LEN (N$)= 0 THEN GOT0 190
2180 FOR i=1 TO LEN (N$): IF (N$(i) <"0"

OR N$(i)>"9") AND (N$(i) < >"—")
THEN GOTO 2000

2190 LET N =VAL (N$)
2200 IF INT (N/1000) >11 AND INT

(N/1000) < > —4 THEN GOT0 2000
2210 IF N <0 THEN GOTO 2280
2220 LET M = INT (N/100): LET

D= N —M*100
2230 LET 0= M — INT (M/10)*10: IF 0 < 1

0R 0 > 7 THEN GOTO 2000
2240 LET M=INT (M/10) + (0 —1)*

12-36
2260 LET ct=ct +1: LET t(2 * ct —1) = D: LET

t(2*ct)=M
2270 G0TO 2000
2280 LET M= —4: LET D= 0— (N —M*100)
2290 IF M< > —4 THEN GOTO 2000
2310 G0T0 2260
2500 PRINT "Enter Note as <Number>,

< Octave > , < Duration > .'"'
2520 PRINT "C — 0 E — 4 G# —

8""`C# — 1 F — 5 A — 9"'"D — 2
F# — 6 A# — 10"'"D# — 3 G — 7
B — 11"

2560 PRINT "'REST is —4"""Semi-
Quaver=1 Minim0 	 = 8"'
"Quaverlil ❑ ❑ ❑ ❑ ❑ =2 Semi-
Breve ❑ = 16— Crotchet ❑ ❑ ❑ = 4
Octavelil =1 to 7"

2600 PRINT "'Duration MUST be 2
digits'""e.g. 3304 — D#,3rd Oct.
Crotchet'""e.g. 6408 — F#,4th Oct.
Minim"

2630 RETURN
3000 CLS
3010 PRINT "Tune Replay"
3020 PRINT : PRINT : PRINT
3030 PRINT "Enter Tempo El — ❑ ❑

(1-15) ❑❑7;
3040 INPUT S
3050 IF S<1 OR S>15 THEN GOTO 3000
3060 LET tempo = 0.02* (16 — S)
3070 FOR i =1 TO ct
3080 LET D=t(2*i —1): LET M =t(2*1)
3090 IF m= —4 THEN G0T0 3120
3100 BEEP D*tempo,M
3110 GOT0 3130
3120 PAUSE 50*Dlempo
3130 NEXT i
3140 RETURN
4000 CLS
4010 PRINT "Tune Editor""""D — Display all

notes"""E — Edit a note' — '1 — Insert a
Note' '"X — Delete a note''"""R —
Return to Main Menu"

4090 PRINT "Enter Option — ";
4100 LET 0$=1NKEY$: IF 0$="" THEN

GOTO 4100
4105 IF CODE (0$) <97 THEN LET

0$= CHR$ (C0DE (0$) +32)
4110 IF 0$< >"d" AND 0$< >"e" AND

0$ < >"i" AND 0$ < >"r" AND
0$ < >"x" THEN GOT0 4000

4120 IF 0$="r" THEN RETURN
4130 IF 0$ ="e" THEN GOT0 4300
4134 IF 0$ ="i" THEN G0T0 4700
4136 IF 0$= "x" THEN G0T0 4800
4140 CLS
4150 FOR i =1 TO ct
4160 LET M =t(2*i): LET D=t(2 * i —1)

4170 LET 0 = INT ((M +36)/12)+1
4180 LET N = (M +36) — (0 —1) * 12
4190 PRINT i;" ❑ Note — 111";N;" ❑ 0ct. —

E ";0;" ❑ Dur. — ❑ ";D
4195 P0KE 23692,255
4200 IF i =20*INT (i/20) THEN G0T0 4220
4210 G0T0 4250
4220 PRINT "'Any Key to Continue E ";
4230 PAUSE 0
4240 PRINT
4250 NEXT i
4260 PRINT "'Any Key to Return ❑ ";
4270 PAUSE 0
4280 G0T0 4000
4320 CLS
4330 G0SUB 2500

MUSIC COMPOSER
PART TWO

LOADING AND SAVEING
ENTERING THE

PROGRAM

ADDING MORE
ROUTINES

VIEWING THE
MAIN MENU

ACORN'S GRAPHICS

2908 F0R V= 0 T0 2
2910 N=VOICE(V,CT)
2911 IF N= —1 THEN 2926
2912 IF INT(N/10) + 1 = —2 THEN 2927
2913 P0KE SID+ (V*7) +4,CR(V)
2914 0 = N — (INT(N/10)10)
2915 IF 0>7 THEN 0=7
2916 M=12 * 0 +INT(N/10)
2917 IF M=0 THEN 2928
2918 HF = H(M):LF = L(M)
2920 P0KE SID+ (V*7),LF:POKE

SID + (V*7) + 1,HF
2922 P0KE SID+ (V*7) + 4,CR(V) +1
2924 GOT0 2928

2926 POKE SID + (V*7) +4,CR(V):
FOR 1=1 TO 50:NEXT:GOT0 2928

2927 DE =VAL(RIGHT$(STR$(N),1)):
F0R 1=1 TO(2i(DE —1))*50:
NEXT I

2928 NEXT V
2930 FOR 1=1 T0 TEMPO:NEXT I
2932 CT= CT + 1:IF CT> 500 THEN RETURN
2934 GOT0 2904
3000 PRINT "EIVOICED";A;

"El PARAMETERS"
3005 R= 0
3020 PRINT"ggIWAVEFORM"TAB(17)

"(T,S,P,N)"TAB(28);:Z$="TSPN"
3030 PRINT MID$(Z$,WF(A —I) + 1,1)
3080 PRINT"ATTACK"TAB(17)"(0 —15)"TAB

(28);AT(A—I)
3090 PRINT"DECAY"TAB(17)"(0-15)"TAB

(28);DE(A —1)
3100 PRINT"SUSTAIN"TAB(17)"(0-15)"

TAB(28);SU(A— I)
3110 PRINT"RELEASE"TAB(17)"(0 —I5)"

TAB(28);RE(A-1)
3120 PRINT"FREQUENCY"TAB(17)

"(0 — 65535)"TAB(28);FR(A —I)
3130 PRINT"PULSE WIDTH"TAB(17)

"(0 — 4095)"TAB(28);PW(A —1)
3140 PRINT"SYNCHRONISATION"TAB(17)

"(ON/OFF)"TAB(28);
3150 IF SY(A—I) = 1 THEN 3160
3155 PRINT"OFF":GOTO 3170
3160 PRINT"ON"
3170 PRINT"RING MODULATION"TAB(17)

"(ON/OFF)"TAB(28);
3180 IF RM(A —I) = 1 THEN 3190
3185 PRINT"OFF":GOTO 3200
3190 PRINT"ON"
3200 PRINT"FILTER"TAB(17)"(ON/OFF)"TAB

(28);
3210 IF Fl(A —I) = 1 THEN 3220
3215 PRINT"OFF":GOTO 3222
3220 PRINT"ON"
3222 PRINT"gg RETURN TO MAIN MENU"
3226 PRINT"giggiusE CURSOR

UP/DOWN T0 MOVE ARROW"
3228 PRINT" < RETURN > T0 SELECT"
3230 PRINT "B21"TAB(36);
3235 F0R 1=1 TO 14:PRINT

"gg111111" ; :NEXT
3236 PRINT "@I"TAB(36);
3237 FOR 1=1 TO LINE:PRINT

"gg ❑ II";:NEXT
3238 PRINT "#-";
3240 GET B$:IF B$="" THEN 3240
3250 IF B$=CHR$(17) THEN

LINE=LINE+1
3260 IF B$=CHR$(145) THEN

LINE= LINE-1
3270 IF LINE<3 THEN LINE=3
3280 IF LINE =13 AND B$=CHR$(17) THEN

LINE=14
3282 IF LINE = 13 AND B$=CHR$(145)

THEN LINE= 12
3285 IF LINE>14 THEN LINE=14
3290 IF B$=CHR$(13) THEN GOSUB 5000
3300 IF R=1 THEN RETURN
3305 IF R=2 THEN 3000

3308 G0TO 3230
4000 PRINT "EIGENERAL PARAMETERS"
4005 R = 0
4020 PRINT"gg gg FILTER FREQUENCY"TAB

(20)"(0 — 2047)"TAB(29);FF
4030 PRINT"FILTER RES0NANCE"TAB(20)

"(0 — 15)"TAB(29);FR
4040 PRINT"FILTER LOW PASS"TAB(20)

"(ON/OFF)"TAB(29);
4050 IF LP =1 THEN 4060
4055 PRINT"OFF":GOTO 4070
4060 PRINT"ON"
4070 PRINT"FILTER BAND PASS"

TAB(20)"(0N/OFF)"TAB(29);
4080 IF BP =1 THEN 4090
4085 PRINT"OFF":GOTO 4100
4090 PRINT"ON"
4100 PRINT"FILTER HIGH PASS"

TAB(20)"(ON/OFF)"TAB(29);
4110 IF HP=1 THEN 4120
4115 PRINT"OFF":GOTO 4130
4120 PRINT"ON"
4130 PRINT"VOICE 3 CONNECTION"

TAB(20)"(ON/OFF)"TAB(29);
4140 IF V3=1 THEN 4150
4145 PRINT"ON":G0TO 4155
4150 PRINT"OFF"
4155 PRINT"VOLUME"TAB(20)"(0 — 15)"

TAB(29)VOL
4158 PRINT"TEMPO"TAB(20)"(0-20)"TAB

(29)(200 — TEM PO)/10
4160 PRINT"gRETURN TO MAIN MENU"
4170 PRINT"gg gm] gg gusE CURSOR

UP/DOWN T0 M0VE ARROW"
4175 PRINT" <RETURN > TO SELECT"
4180 PRINT "l§"TAB(36);
4190 FOR 1=1 TO 12:PRINT

"gg ❑ II";:NEXT I
4200 PRINT "@"TAB(36);
4210 FOR 1=1 TO LINE:PRINT

"gg DIV:NEXT I
4220 PRINT" 4— ";
4230 GET B$:IF B$=`"' THEN 4230
4240 IF B$="gg" THEN LINE= LINE + 1
4250 IF B$=" ❑ " THEN LINE= LINE-1
4260 IF LINE<3 THEN LINE=3
4270 IF LINE =11 AND B$="gg" THEN

LINE=12
4280 IF LINE= 11 AND B$ = "0" THEN

LINE=10
4290 IF LINE>12 THEN LINE=12
4300 IF B$ = CHR$(13) THEN GOSUB 5000
4310 IF R=1 THEN RETURN
4320 IF R=2 THEN 4000
4330 G0TO 4180
5000 IF A=4 THEN 5500
5010 IF LINE< >14 THEN 5025
5020 R = 1:RETURN
5025 R =2
5030 0N LINE-2 GOTO 5040,5130,5130,

5130,5130,5220,5270,5320,5360,5400

5040 GOSUB 5900
5050 PRINT"ENTER T,S,P OR N — ❑ ❑ ";
5060 GET C$:IF C$="" THEN 5060
5070 IF C$ < >"T" AND C$< >"S" AND

C$ < >"P" AND C$ < >"N" THEN
RETURN

5080 IF C$="T" THEN WF(A-1)= 0
5090 IF C$="S" THEN WF(A —1) =1
5100 IF C$="P" THEN WF(A —1) = 2
5110 IF C$="N" THEN WF(A-1) =3
5120 GOSUB 6000:RETURN
5130 G0SUB 5900
5140 PRINT"ENTER VALUE — ❑ ❑ ";
5150 INPUT V
5160 IF V<0 OR V>15 THEN RETURN
5170 IF LINE =4 THEN AT(A —1)=V
5180 IF LINE=5 THEN DE(A-1)=V
5190 IF LINE=6 THEN SU(A-1)=V
5200 IF LINE =7 THEN RE(A-1) = V
5210 GOSUB 6000:RETURN
5220 GOSUB 5900
5230 PRINT"ENTER VALUE — ❑ ❑ ";
5240 INPUT V
5250 IF V<0 OR V>65535 THEN RETURN
5260 FR(A — 1) = V:GOSUB 6000:RETURN
5270 GOSUB 5900
5280 PRINT"ENTER VALUE — ❑ ❑ ";
5290 INPUT V
5300 IF V<0 OR V>4095 THEN RETURN
5310 PW(A —1) =V:GOSUB 6000:RETURN
5320 IF SY(A-1) THEN 5340
5330 SY(A-1)=1:GOTO 5350
5340 SY(A —1) =0
5350 GOSUB 6000:RETURN
5360 IF RM(A-1) THEN 5380
5370 RM(A-1)=1:GOTO 5390
5380 RM(A-1) =0
5390 G0SUB 6000:RETURN
5400 IF Fl(A-1) THEN 5420
5410 FICA —1) =1:GOT05430
5420 Fl(A-1)=0
5430 GOSUB 6000:RETURN
5500 IF LINE< >12 THEN 5515
5510 R=1:RETURN
5515 R=2
5520 ON LINE-2 GOTO 5530,5580,5650,

5690,5730,5770,5580,5810
5530 GOSUB 5900
5540 PRINT"ENTER VALUE — DU";
5550 INPUT V
5560 IF V<0 OR V>2047 THEN RETURN
5570 FF =V:GOSUB 6000:RETURN
5580 GOSUB 5900
5590 PRINT"ENTER VALUE — ❑ 0";
5600 INPUT V
5610 IF V<0 OR V>15 THEN RETURN
5620 IF LINE = 4 THEN FR =V
5630 IF LINE = 9 THEN VOL =V
5640 GOSUB 6000:RETURN
5650 IF LP THEN 5670
5660 LP =1:GOT05680

500 DEFPROCSave
510 VDU4:CLS:PRINTTAB(6,3);"Enter the

output file name. "TAB(14,4);:1NPUTFn$
520 IFFn$=""GOT0570
530 X = OPENOUTFn$
540 PRINT#X,NO%,SD,EV%
550 FORY=0TONO%-1:PRINT#X,S(0,Y),

S(1,Y)
560 NEXT:CLOSE#X
570 PROCno:ENDPROC
580 DEFPROCLoad
590 VDU4:CLS:PRINTTAB(6,3);"Enter the

input file name. "TAB(14,4);:INPUTFn$
600 IFFn$=""GOTO 570
610 X = OPENINFn$:1NPUT# X,N0%,SD,EV%
620 FORY=0TONO%-1:INPUT#X,S(0,Y),

S(1,Y)
630 NEXT:CLOSE#X
640 D%=NO%-29:IFD%<1THEND%=1
650 PROCDisplay(D%,NO%):ENDPROC
660 DEFPROCEnvelope
670 VDU4:CLS:PRINTTAB(4,2)"1:Organ."TAB

(19,2)"4:Harpsichord."
680 PRINTTAB(4,3)"2:Vibrato(1)."TAB(19,3)

"5:Piano."
690 PRINTTAB(4,4)"3:Vibrato(2)."
700 PRINTTAB(13,5)"Enter choice."
710 REPEAT:VDU7:EV%= GET — 48:UNTIL

EV%>0ANDEV%<6
720 PR0Cno:ENDPROC
730 DEFPROCV
740 VDU4:CLS:PRINTTAB(7,2)"Enter the note

number that"TAB(8)"you want to
display from?";:PROCRead

750 IFD%> = NO%PROCrange(1):GOT0740
760 IFD%=0D%=1
770 PROCDisplay(D%,N0%):ENDPROC
780 DEFPROCChangespeed
790 REPEAT:SOUND0,4,6,4*SD
800 TIME= 0:REPEATUNTILTIME>SD * 20
810 A%=INKEY(1):*FX15,0
820 IFINKEY(—58)SD =SD —0.125:

IFSD <1SD = 1
830 IFINKEY(—42)SD = SD + 0.125:IF

SD >3SD = 3
840 UNTILA%=13:SOUND16,0,0,0:A%=67:

ENDPROC
850 DEFPROCTie(Q%,W%)
860 D%=S(1,Q%)
870 IFD%< >11ANDD%< >7ANDD%< >

4ANDD%< > 2ANDD% < >1ENDPROC
880 VDU4:CLS:PRINTTAB(12,3);"Tieing"
890 IF1%>41%=0
900 0%=D%(I%):PROCM(0,4)
910 I FA% > 13ANDA% < 91G 0T0990
920 IFD%(I%)> D%ANDD%= 4D%= 3
930 IFD%(I%)> D%ANDD%=7D%= 4
940 IFD%(I%) > D%S(1,Q%) = D%+ D%(I%)

ELSES(1,Q%) = D%+ 5 — I%

950 VDU5:PROCDrawnote(D%(I%),SE%+ NS
(NE))

960 Y%=SE%+NS(NE)
970 MOVEX%— S%*2 +15,Y%— 32
980 F0RX = 0T020:DRAWX%(X) + X%— 73,

Y%(X) + Y%— 32:NEXT
990 PROCno:A%=84:ENDPROC
1000 DEFPR0CInsert
1010 VDU4:CLS:PRINTTAB(7,2)"Enter the note

number that"TAB(8)
"you want to insert after?";:
PR0CRead

1020 IFD$=""THENPROCno:ENDPROC
1030 IFD%> =NO%PROCrange(1):

G0T01010
1040 TF%= F%:F3%=1
1050 K%= NO%-1 — D%:NO%= D%+1:

LT% = LT% — K%
1060 F0RX= K%-1TO0STEP —1
1070 S(0,LT%+ 1 +X) =S(0,N0%+ X):S(1,

LT%+1 +X)= S(1,N0%+ X)
1080 NEXT:J%= D%+1:PR0CDisplay

(NO%-20,N0%)
1090 REPEAT:J%=J%-1
1100 UNTILS(0,J%) =2560RS(0,J%) =257
1110 F%= (S(0,J%)< >256)
1120 ENDPROC
1130 DEFPR0CInsertexit
1140 VDU4:CLS:PRINTTAB(7,2)"Exiting from

insert mode"
1150 IFNO%=LT%+1THEN1180
1160 FORX=0TOK%-1
1170 S(0,N0%+X)=S(0,LT%+1 +X):S(1,

NO%+X)=S(1,LT%+1+X):NEXT
1180 NO% = N0% + K%:LT%= TLT%:F%=

TF%:F3%= 0
1190 PROCDisplay(NO%-20,N0%)
1200 ENDPROC
1210 DEFPROCDelete
1220 VDU4:PRINTTAB(15,6)"No:";NO%

TAB(7,2)"Enter the note number
that"TAB(8)"you want to delete from? El ";

1230 PROCRead
1240 IFD$ = ""PROCno:ENDPROC
1250 L%=D%
1260 IFL% < > 0GOT01290
1270 IFS(0,0)=256S(0,0)=257ELSE

S(0,0)=256
1280 PROCDisplay(E%(0),NO%):ENDPROC
1290 IFL%> =NO%PROCrange(1):G0TO

1220
1300 CLS:PRINTTAB(7,2)"Enter the note

number that"TAB(7)"you want to delete
to? El ";:PROCRead

1310 IFD$=""R%=L%:GOT01350
1320 IFD$ ="999"R%= NO%-1:

G0T01350
1330 R%= D%:IFR%> = NO%PROCrange(1):

GOT01300
1340 IFR%< L%PROCrange(0):GOT01300
1350 M%=R%—L%+1:IFR%= NO%-1

THEN1390
1360 D%=L%-1:REPEAT:D%= D%+1
1370 S(0,D%)=S(0,M%+D%):S(1,

D%)=S(1,M%+D%)
1380 UNTILD%+ M%— NO%
1390 N0%— N0%—M%:IFNO%> = E%(0)

D%= E%(0)ELSED%= NO%— 29:IF
D% < 1D% = 1

1400 PR0CDisplay(D%,N0%)
1410 C% = NO%: R EPEAT:C% = C% — 1:UNTIL

S(0,C%) = 2560RS(0,C%) = 257
1420 IFS(0,C%) = 256F%= 0ELSEF%= —1
1430 ENDPROC
1440 DEFPROCDrawtrebleclef(Y%)
1450 FORD%=Y%+ 96TOY%STEP —32:

M0VEX%,D%
1460 PRINTT$((Y%+ 96 — D%)/32):NEXT
1470 X%=X%+S%+20:ENDPROC
1480 DEFPROCDrawbassclef(Y%)

1490 F0RD%=Y%+60T0Y%+28STEP-
32:MOVEX%,D%

1500 PRINTB$((Y%+ 60— D%)/32):NEXT
1510 X%= X% + S%+ 20:ENDPR0C
1520 DEFPROCDrawstave(D%)
1530 FORY%= D%+64T0D%STEP —16
1540 M0VE20,Y%:DRAW1250,Y%
1550 NEXT:ENDPR0C
1560 DEFPR0CDrawrest(R%,Y%)
1570 MOVEX%,Y%:PRINTR$(R%,0)
1580 MOVEX%,Y%-32:PRINTR$(R%,1)
1590 X%=X%+S%:ENDPR0C
1600 DEFPROCDrawnote(N%,Y%)
1610 MOVE X%,Y%
1620 IFN% > 6PRINTN1$ELSEPRINTN2$
1630 IFN%<11M0VEX%+ 28,Y% — 16:DRAW

X%+ 28,Y%+ 32
1640 IFN% < 4DRAWX%+ 42,Y%+ 20
1650 IFN%=1M0VEX%+ 30,Y%+ 20:DRAW

X%+ 42,Y%+ 8
1660 IFNE<3MOVEX%-7,SE%-16:

DRAWX%+ 34,SE% - 16
1670 IFNE = 0MOVEX%-7,SE%- 32:DRAW

X%+ 34,SE%- 32
1680 IFNE > 13MOVEX%-7,SE%+ 80:DRAW

X%+ 34,SE% +80
1690 IFNE >15MOVEX%- 7,SE%+ 96:DRAW

X%+ 34,SE%+ 96
1700 X%=X%+S%
1710 IFN% = 1ORN%= 2ORN%= 4

ORN%=7ORN%=11ENDPROC
1720 D%= -1
1730 REPEAT:D%=D%+1:UNTIL

N%- D%(D%) >0
1740 0%= N%- D%(D%)
1750 IFO% = 50% =11
1760 IF0%=40%=7
1770 IF0%= 30%= 4
1780 PROCDrawnote(0%,Y%)
1790 MOVEX% - S%*2 + 15,Y%- 32
1800 FORX = 0T020:DRAWX%(X) + X% - 73,

Y%(X) +Y%-32:NEXT:ENDPROC
1810 DEFPROCACC(Acc$,Y%)
1820 MOVEX%,Y%:PRINTAcc$:X%=X%+

S%- 20
1830 ENDPROC
1840 DEFPROCDisplaysymbols
1850 X%=100: S%= S%+ 20: FOR X=0

TO 4
1860 PROCDrawnote(D%(X),710):NEXT
1870 PROCACC(S$,710):X%= X%+ 20
1880 PROCACC(F$,710):X%=X%+ 20
1890 FORX=0T04:PROCDrawrest(X,710):

NEXT
1900 S%=S%-20:PROCDrawtrebleclef(670)
1910 PROCDrawbassclef(670):ENDPROC
1920 DEFPROCDrawthreestaves
1930 FORX =ST%(0)TOST%(2)STEP - 200
1940 PROCDrawstave(X):NEXT:ENDPROC

1UFAI !HI
600 P= P-36
610 IF P=1 ANDC<3 THEN C=C+1:

OC$= MID$(STR$(C),2)
620 IF P=2 ANDC>1 THEN C=C-1:

OC$ = MID$(STR$(C),2)
630 IF (P=3 OR P=6)ANDLE>1 THENLE=

LE-1:LE$= MID$(R1$,LE,1)+" 0"
640 IF (P=4 OR P=7) ANDLE<5 THEN

LE = LE +1:LE$ = MID$(R1$,LE,1) +

650 IF P=5 THEN1$="p":P$="":
GOT0700

660 IF P=6 OR P=7 THEN LE$= LEFT$
(LEV) + "."

670 IF P=8 THEN RETURN
680 IF P=9 AND NN> 0 THEN NN=NN-1
690 GOT0490
700 IF 1$> ="a" AND 1$< ="g" THEN

P$= CHR$(ASC(I$) -32) ELSEIF

I$< >"p" THEN P$ =1$+"#"ELSE
P$="'

710 PL$="V31;T"+STR$(TE)+"L"+L2$
(1NSTR(R1$,LEFT$(LE$,1)))

720 IF MID$(LE$,2,1)="." THEN
PL$=PL$+"."

730 PL$ = PL$ +"0" + OC$+ P$:PLAY PL$
740 NN = NN +1:N$(NN) =1$ + OC$ + LE$
750 GOTO 530
760 CLS
770 PRINT@5,"MANUAL ENTRY OF

NOTES":PRINT@34,"ENTER 'm' TO
RETURN TO MENU"

780 PRINT"USE FORMAT: a1h. ('.'
OPTIONAL)"

790 GOSUB 280:PRINT@416,"ENTER NOTE
STRING:"

800 IF NN = MX THEN PRINT@448,
"MAXIMUM NOTES ENTERED!":FORD =1
T01000: NEXT:RETURN

810 POKE 329,0:PRINT@448:PRINT@462,;:
LINE INPUT A$

820 IF A$="" THEN 810
830 IF A$ ="m" OR A$="M" THEN

RETURN
840 IF LEN (A$) > 4 OR LEN (A$) <3 THEN

910
850 IF (INSTR(R3$,LEFT$(A$,1))) = 0 THEN

910
860 IF LEFT$(A$,1)="p" THEN A$="p"+

"0" + MID$(A$,3):GOT0880
870 IF (INSTR(R2$,MID$(A$,2,1)))= 0

THEN 910
880 IF (INSTR(R1$,MID$(A$,3,1)))= 0

THEN 910
890 IF MID$(A$,4,1)< >"." THEN A$=

LEFT$(A$,3) + "CI"
900 GOTO 920
910 PRINT@448,LEFT$(A$,4);" El -

ILLEGAL ENTRY!":SOUND 1,5:GOTO 810
920 NN=NN+1:N$(NN)=A$
930 GOTO 790
940 IF NN =0 THEN RETURN ELSE POKE

329,0
950 PRINT@448,"1: DELETE NOTES","2:

INSERT NOTES","3: CHANGE NOTES","4:
CONTINUE";

960 A$=INKEY$:IF A$< "1" OR A$ >"4"
THEN 960

970 OP=VAL(A$)
980 ON OP GOTO 1000,1100,1260,990
990 RETURN
1000 IF NN =0 THEN 940 ELSE CLS:INPUT

"START AT WHICH NOTE";ST
1010 IF ST= 0 THEN 940
1020 IF ST> NN THEN 1000
1030 PRINT@64,"DELETE HOW MANY

(ENTER =1)";:INPUT ND
10401F ND< =0 THEN ND=1
1050 IF ST+ND -1 >NN THEN

ND = NN - ST +1

1060 FOR 1=1 TO ND
1070 FOR J =ST TO NN -1:N$(J)=

N$(J +1):NEXT
1080 NN=NN-1
1090 NEXT I:RETURN
1100 CLS:PRINT@7,"INSERT NOTES MODE"
1110 PRINT@64,"START INSERT AFTER

WHICH NOTE":INPUT ST
1120 IF ST<0 THEN 940
1130 IF ST>NN THEN ST= NN
1140 PRINT@64,"ENTER 'm' WHEN YOU'VE

FINISHED": PRINT
1150 IF NN = MX THEN PRINT"MAX

NUMBER OF NOTES ENTERED!":
FORD =1T01000:NEXT:RETURN

1160 INPUT N$:IF N$="M" OR N$ ="m"
THEN RETURN

1170 IF LEN(N$) <3 THEN PRINT
"ILLEGAL":GOT01160

1180 IF INSTR(R3$,LEFT$(N$,1))= 0 OR
INSTR(R2$,MID$(N$,2,1)) =0 OR INSTR
(R1$,MID$(N$,3,1)) =0 THEN PRINT
"ILLEGAL":GOTO 1160

1190 IF MID$(N$,4,1)="." THEN
N$=LEFT$(N$,4) ELSE
N$= LEFT$(N$,3) + "0"

1200 IF ST=NN THEN 1230
1210 FOR I = NN +1 TO ST+ 2 STEP -1
1220 N$(1) = N$(1-1):NEXT
1230 N$(ST +1) = N$
1240 ST=ST+1:NN=NN+1
1250 GOTO 1150
1260 CLS:PRINT"CHANGE WHICH

NOTE";:INPUT ST
1270 IF ST=0 THEN 940
1280 IF ST> NN THEN ST= NN
1290 PRINT:PRINT"THIS IS CURRENTLY:":

A$=N$(ST):RT=255:GOSUB 350
1300 PRINTN$(ST)
1310 PRINT@320:PRINT@320,"";:INPUT

"NEW CONTENTS:";N$
1320 IF LEN(N$) <3 THEN 1310
1330 IF INSTR(R3$,LEFT$(N$,1))= 0 OR

INSTR(R2$,MID$(N$,2,1)) = 0 OR INSTR
(R1$,MID$(N$,3,1))= 0 THEN 1310

1340 IF MID$(N$,4,1)="." THEN N$=
LEFT$(N$,4) ELSE N$= LEFT$(N$,3)+" ❑ "

1350 N$(ST) = N$:FORK =1T02000:NEXT:
GOT0940

1360 IF NN = 0 THEN RETURN ELSE
CLS:PRINT@7,"LIST NOTES
OPTION":C

1370 IF (PEEK(65314)AND1) =1 THEN 1400
1380 POKE 329,255:PRINT@64,"";:

INPUT "LIST TO PRINTER (Y/N)";P$
1390 IF P$="Y" THEN C= -2
1400 PRINT@128,"START AT NOTE

NUMBER";:INPUT ST
1410 IF ST< =0 THEN ST=1
1420 IF ST>NN THEN ST=NN
1430 CLS:LP =0

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Animation

of boulders in cliffhanger
1276-1281,1328-1332

of sprites
Commodore 64 	1259-1263

with LOGO 	1317-1320
Applications

horoscope program 1245-1253
room planner program

1269-1275,1308-1313
Artificial intelligence 1264, 1294

B
Basic programming

moving colour sprites
Commodore 64
	

1258-1263
operating system
	

1322-1327
recursion
	

1289-1295

C
Cavendish Field game

part 1—design considerations
and setting up UDGs

1254-1257
part 2—map and troop arrays

1282-1288
part 3—issuing orders

1301-1307
Cliffhanger

part 12—adding weather
1240-1244

part 13—rolling boulders 1
1276-1281

part 14—rolling boulders 2
1328-1332

Collision detection,
of sprites
Commodore 64
	

1263
Colour

of sprites
Commodore 64
	

1262

D
Desperate decorator game

1314-1316
DIMensioning arrays, in

Cavendish Field game 	1282
DRAW

absolute, how to create
Spectrum 	 1324

Drawing
in room planner program

1269-1275,1308-1313
with LOGO 	1296-1300

E
Edit mode, in LOGO
	

1296
Envelopes, sound

loud and quiet in cliffhanger
Acorn
	

1243-1244
EXEC, Dragon, Tandy

to access OS
	

1326-1327

F
Factorials

program to calculate
1291-1293

*FX commands, Acorn
to access OS 	1324-1326

G
Games

Cavendish Field 	1254-1257,
1282-1288,1301-1307

cliffhanger 	1240-1244,
1276-1281,1328-1332

desperate decorator 1314-1316
horoscope program 1245-1253
life 1237-1239

Garbage collection,
in LOGO 	 1299
using EXEC

Dragon, Tandy 	1327
Geometry, turtle 	1296
Graphics

in Cavendish Field game
1254-1256,1282-1288

sprites, Commodore 64
moving and storing 1258-1263
using LOGO

1296-1300,1317-1320

H
Horoscope program 1245-1253
Housekeeping, definition 	1323

IF *** THEN, in LOGO 	1300
Infix notation, in LOGO 1320

K
Keypresses

detecting by OS 	1323

L
Languages

LOGO 1264-1268,1296-1300,
1317-1321

Life game 	1237-1239
LOGO 	1264-1268,1296-1300

sprites, words and maths
1317-1321

M
Machine code

games programming
see cliffhanger; life game

Mathematical functions
with LOGO 	 1320

Memory
banks, range of

Commodore 64 	1258-1259
checking with LOGO 	1299
locations of VIC-II chip

Commodore 64 	1262
managing by OS 	1323-1327
storing sprites in

Commodore 64 	1258-1260

N
Nodes, memory,

in LOGO
	

1299

0
Operating system

accessing
	

1324-1327
how it works 	1322-1324

OS command line interpreter
(OSCLI)

Acorn 	 1324-1326
OSBYTE, Acorn 	1324-1326
OSWORD, Acorn 	1326

P
Patterns, drawing in LOGO

1296-1300
Pointers, sprite

Commodore 64 	1260-1261
POKE

use of to access OS
Spectrum 	 1324

use of to enable
and store sprites

Commodore 64 	1259-1263
Prefix notation, in LOGO 1320

Primitives, definition 	1267
Procedures, in LOGO 	1268

use of to draw patterns
1296-1300

Punctuation, with LOGO
1320-1321

Q
Quicksort program,

recursive 	1293-1294

R
Recursion

in BASIC 	1289-1295
in LOGO 	1299-1300

Room planner program
part 1 	 1269-1275
part 2 	 1308-1313

S
Sprites 	Commodore 64

moving and storing 1258-1263
Sprites, LOGO 1317-1320
Subroutines, calling

by recursion 	1289-1295
SYS, Commodore 64

to access OS 	 1324

Towers of Hanoi program
1294-1295

Turtle, use of 	1266-1268
for graphics 	1296-1300

U
USR, to access OS

Acorn 	 1324-1326
Spectrum 	 1324

VIC-II chip
Commodore 64 	 1258

memory locations of 	1262

Wargames
see Cavendish Field

Word-handling
with LOGO 	1320-1321

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

What have dragons, Albert Einstein,
pretty pictures, pieces of string, and new
concepts in mathematics and geometry
in common? Read MODELS OF
IRREGULARITY and find out!

Budding Houdinis can start preparing
to escape from the evil king's castle in
part one of INPUT's new ADVENTURE
GAME

There at the beginning of computer
languages, LISP is also the way of the
future in many artificial intelligence
applications

Complete the MUSIC COMPOSER
program and start dotting those minims,
and tampering with tempo

whizzes out of the starting
blocks and bounds up the hillside in the
next part of CLIFFHANGER

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

